Parouse.com
Parouse.com

Power-to-weight ratio (or specific power or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source. It is also used as a measurement of performance of a vehicle as a whole, with the engine's power output being divided by the weight (or mass) of the vehicle, to give a metric that is independent of the vehicle's size. Power-to-weight is often quoted by manufacturers at the peak value, but the actual value may vary in use and variations will affect performance. The inverse of power-to-weight, weight-to-power ratio (power loading) is a calculation commonly applied to aircraft, cars, and vehicles in general, to enable the comparison of one vehicle's performance to another. Power-to-weight ratio is equal to thrust per unit mass multiplied by the velocity of any vehicle.

Contents

1 Power-to-weight (specific power)

1.1 Physical interpretation

1.1.1 Propulsive power 1.1.2 Engine
Engine
power

2 Examples

2.1 Engines

2.1.1 Heat engines and heat pumps 2.1.2 Electric motors/Electromotive generators 2.1.3 Fluid engines and fluid pumps 2.1.4 Thermoelectric generators and electrothermal actuators

2.2 Electrochemical (galvanic) and electrostatic cell systems

2.2.1 (Closed cell) batteries 2.2.2 Electrostatic, electrolytic and electrochemical capacitors 2.2.3 Fuel cell
Fuel cell
stacks and flow cell batteries

2.3 Photovoltaics 2.4 Vehicles

2.4.1 Utility and practical vehicles

2.4.1.1 Notable low ratio 2.4.1.2 Common power 2.4.1.3 Performance luxury, roadsters and mild sports

2.4.2 Sports vehicles and aircraft

2.5 Human

Power-to-weight (specific power) The power-to-weight ratio (Specific Power) formula for an engine (power plant) is the power generated by the engine divided by the mass. ("Weight" in this context is a colloquial term for "mass". To see this, note that what an engineer means by the "power to weight ratio" of an electric motor is not infinite in a zero gravity environment.) A typical turbocharged V8 diesel engine might have an engine power of 250 kW (340 hp) and a mass of 380 kg (840 lb),[1] giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb). Examples of high power-to-weight ratios can often be found in turbines. This is because of their ability to operate at very high speeds. For example, the Space Shuttle's main engines used turbopumps (machines consisting of a pump driven by a turbine engine) to feed the propellants (liquid oxygen and liquid hydrogen) into the engine's combustion chamber. The original liquid hydrogen turbopump is similar in size to an automobile engine (weighing approximately 352 kilograms (775 lb)) and produces 72,000 hp (53.6 MW)[2] for a power-to-weight ratio of 153 kW/kg (93 hp/lb). Physical interpretation In classical mechanics, instantaneous power is the limiting value of the average work done per unit time as the time interval Δt approaches zero.

P =

lim

Δ t → 0

Δ W ( t )

Δ t

=

lim

Δ t → 0

P

a v g

displaystyle P=lim _ Delta trightarrow 0 tfrac Delta W(t) Delta t =lim _ Delta trightarrow 0 P_ mathrm avg ,

The typically used metrical unit of the power-to-weight ratio is

W

k g

displaystyle tfrac W kg ;

which equals

m

2

s

3

displaystyle tfrac m^ 2 s^ 3 ;

. This fact allows one to express the power-to-weight ratio purely by SI base units. Propulsive power If the work to be done is rectilinear motion of a body with constant mass

m

displaystyle m;

, whose center of mass is to be accelerated along a straight line to a speed

v

( t )

displaystyle mathbf v (t);

and angle

ϕ

displaystyle phi ;

with respect to the centre and radial of a gravitational field by an onboard powerplant, then the associated kinetic energy to be delivered to the body is equal to

E

K

=

1 2

m

v

( t )

2

displaystyle E_ K = tfrac 1 2 mmathbf v (t)^ 2

where:

m

displaystyle m;

is mass of the body

v

( t )

displaystyle mathbf v (t);

is speed of the center of mass of the body, changing with time.

The instantaneous mechanical pushing/pulling power delivered to the body from the powerplant is then

P

K

=

1 2

m 2

v

( t )

lim

Δ t → 0

Δ

v

( t )

Δ t

= m

a

( t ) ⋅

v

( t ) =

F

( t ) ⋅

v

( t ) =

τ

( t ) ⋅

ω

( t )

displaystyle P_ K = tfrac 1 2 m2mathbf v (t)lim _ Delta trightarrow 0 tfrac Delta mathbf v (t) Delta t =mmathbf a (t)cdot mathbf v (t)=mathbf F (t)cdot mathbf v (t)=mathbf tau (t)cdot mathbf omega (t)

where:

a

( t )

displaystyle mathbf a (t);

is acceleration of the center of mass of the body, changing with time.

F

( t )

displaystyle mathbf F (t);

is linear force – or thrust – applied upon the center of mass of the body, changing with time.

v

( t )

displaystyle mathbf v (t);

is velocity of the center of mass of the body, changing with time.

τ

( t )

displaystyle mathbf tau (t);

is torque applied upon the center of mass of the body, changing with time.

ω

( t )

displaystyle mathbf omega (t);

is angular velocity of the center of mass of the body, changing with time.

In propulsion, power is only delivered if the powerplant is in motion, and is transmitted to cause the body to be in motion. It is typically assumed here that mechanical transmission allows the powerplant to operate at peak output power. This assumption allows engine tuning to trade power band width and engine mass for transmission complexity and mass. Electric motors do not suffer from this tradeoff, instead trading their high torque for traction at low speed. The power advantage or power-to-weight ratio is then

P-to-W

=

a

( t )

v

( t )

g

displaystyle mbox P-to-W = frac mathbf a (t)mathbf v (t) mathbf g ;

where:

v

( t )

displaystyle mathbf v (t);

is linear speed of the center of mass of the body.

Engine
Engine
power The actual useful power of any traction engine can be calculated using a dynamometer to measure torque and rotational speed, with peak power sustained when the transmission and/or operator keeps the product of torque and rotational speed maximised. For jet engines there is e be usefully calculated there, for rockets there is typically no cruise speed, so it is less meaningful. Peak power of a traction engine occurs at a rotational speed higher than the speed when torque is maximised and at or below the maximum rated rotational speed – Max RPM. A rapidly falling torque curve would correspond with sharp torque and power curve peaks around their maxima at similar rotational speed, for example a small, lightweight engine with a large turbocharger. A slowly falling or near flat torque curve would correspond with a slowly rising power curve up to a maximum at a rotational speed close to Max RPM, for example a large, heavy multi-cylinder engine suitable for cargo/hauling. A falling torque curve could correspond with a near flat power curve across rotational speeds for smooth handling at different vehicle speeds, such as a traction electric motor. Examples Engines Heat engines and heat pumps Thermal energy is made up from molecular kinetic energy and latent phase energy. Heat engines are able to convert thermal energy in the form of a temperature gradient between a hot source and a cold sink into other desirable mechanical work. Heat pumps take mechanical work to regenerate thermal energy in a temperature gradient. Care should be made when interpreting propulsive power, especially for jet engines and rockets, deliverable from heat engines to a vehicle.

Heat Engine/ Heat pump
Heat pump
type Peak Power Output Power-to-weight ratio Example Use

SI English SI English

Wärtsilä
Wärtsilä
RTA96-C 14-cylinder two-stroke Turbo Diesel engine[3] 7007800800000000000♠80,080 kW 7007812216300127408♠108,920 hp 0.03 kW/kg 0.02 hp/lb Emma Mærsk
Emma Mærsk
container ship

Suzuki
Suzuki
538 cc V2 4-stroke gas (petrol) outboard Otto engine[4] 19 kW 7004186424967895567♠25 hp 0.27 kW/kg 0.16 hp/lb Runabout boats

DOE/NASA/0032-28 Mod 2 502 cc gas (petrol) Stirling engine[5] 62.3 kW 7004622659392771195♠83.5 hp 0.30 kW/kg 0.18 hp/lb Chevrolet
Chevrolet
Celebrity[•] 1985

GM 6.6 L Duramax LMM (LYE option) V8 Turbo Diesel engine[1] 246 kW 7005246080957622149♠330 hp 0.65 kW/kg 0.40 hp/lb Chevrolet
Chevrolet
Kodiak,[•] GMC Topkick[•]

Junkers Jumo 205A opposed-piston two-stroke Diesel engine[6] 647 kW 7005646521788661828♠867 hp 1.1 kW/kg 0.66 hp/lb Ju 86C-1 airliner, B&V Ha 139 floatplane

GE LM2500+ marine turboshaft Brayton gas turbine[7] 30,200 kW 7007302008447990819♠40,500 hp 1.31 kW/kg 0.80 hp/lb GTS Millennium cruiseship, QM2 ocean liner

Mazda
Mazda
13B-MSP Renesis 1.3 L Wankel engine[8] 184 kW 7005184187868280820♠247 hp 1.5 kW/kg 0.92 hp/lb Mazda
Mazda
RX-8[•]

PW R-4360 71.5 L 28-cylinder supercharged Radial engine 3,210 kW 7006320650944780376♠4,300 hp 1.83 kW/kg 1.11 hp/lb B-50 Superfortress, Convair B-36

C-97 Stratofreighter, C-119 Flying Boxcar

Hughes H-4 Hercules
Hughes H-4 Hercules
"Spruce Goose"

Wright R-3350
Wright R-3350
54.57 L 18-c s/c Turbo-compound Radial engine 2,535 kW 7006253537956337971♠3,400 hp 2.09 kW/kg 1.27 hp/lb B-29 Superfortress, Douglas DC-7

C-97 S/f prototype, Kaiser-Frazer C-119F

O.S. Engines
O.S. Engines
49-PI Type II 4.97 cc UAV Wankel engine[9] 0.934 kW 7002933616239221002♠1.252 hp 2.8 kW/kg 1.7 hp/lb Model aircraft, Radio-controlled aircraft

JetCat SPT10-RX-H UAV turboshaft[10] 9 kW 7003900000000000000♠12 hp 3.67 kW/kg 2.24 hp/lb Model aircraft, Radio-controlled aircraft

GE LM6000 marine turboshaft Brayton gas turbine[11][12][disputed – discuss] 44,700 kW 7007446674223077779♠59,900 hp 5.67 kW/kg 3.38 hp/lb Peaking power plant

GE CF6-80C2 Brayton high-bypass turbofan jet engine[12] Boeing
Boeing
747,[•] 767, Airbus A300

BMW
BMW
V10 3L P84/5 2005 gas (petrol) Otto engine[13] 690 kW 7005689772381213599♠925 hp 7.5 kW/kg 4.6 hp/lb Williams FW27
Williams FW27
car,[•] Formula One
Formula One
auto racing

BMW
BMW
i4 1.490L M12 engine 1987 gas (petrol) Otto engine[13][14] 1030 kW 7006104397982021517♠1,400 hp 8.25 kW/kg 5.07 hp/lb Arrows A10
Arrows A10
car,[•] Formula One
Formula One
auto racing

GE90-115B Brayton turbofan jet engine[15][16][disputed – discuss] 83,164 kW 7007831649238780842♠111,526 hp 10.0 kW/kg 6.10 hp/lb Boeing
Boeing
777

PWR RS-24 (SSME) Block II H2 Brayton turbopump[17][18] 63,384 kW 7007633844890844929♠85,000 hp 138 kW/kg 84 hp/lb Space Shuttle
Space Shuttle
( STS-110
STS-110
and later)[•]

PWR RS-24 (SSME) Block I H2 Brayton turbopump[2] 53,690 kW 7007536903907539234♠72,000 hp 153 kW/kg 93 hp/lb Space Shuttle

Full vehicle power-to-weight ratio shown below

Electric motors/Electromotive generators An electric motor uses electrical energy to provide mechanical work, usually through the interaction of a magnetic field and current-carrying conductors. By the interaction of mechanical work on an electrical conductor in a magnetic field, electrical energy can be generated.

Electric motor
Electric motor
type Weight Peak Power Output Power-to-weight ratio Example Use

SI English SI English kW/kg hp/lb

Panasonic
Panasonic
MSMA202S1G AC servo motor[19] 6.5 kg 14 lb 2 kW 2.7 hp 0.31 kW/kg 0.19 hp/lb Conveyor belts, Robotics

Toshiba
Toshiba
660 MVA water cooled 23kV AC turbo generator 1,342 t 2,959,000 lb 660 MW 890,000 hp 0.49 kW/kg 0.30 hp/lb Bayswater, Eraring Coal Power stations

Canopy Tech. Cypress 32 MW 15 kV AC PM generator[20] 33,557 kg 73,981 lb 32 MW 43,000 hp 0.95 kW/kg 0.58 hp/lb Electric Power stations

Toyota
Toyota
Brushless AC Nd Fe B PM motor[21] 36.3 kg 80 lb 50 kW 67 hp 1.37 kW/kg 0.84 hp/lb Toyota
Toyota
Prius[•] 2004

Himax HC6332-250 Brushless DC motor[22] 0.45 kg 0.99 lb 1.7 kW 2.3 hp 3.78 kW/kg 2.30 hp/lb Radio controlled cars

Hi-Pa Drive HPD40 Brushless DC wheel hub motor[23] 25 kg 55 lb 120 kW 160 hp 4.8 kW/kg 2.92 hp/lb Mini
Mini
QED HEV, Ford F150
Ford F150
HEV

ElectriFly GPMG4805 Brushless DC[24] 1.48 kg 3.3 lb 8.4 kW 11.3 hp 5.68 kW/kg 3.45 hp/lb Radio-controlled aircraft

YASA-400 Brushless AC[25] 24 kg 53 lb 165 kW 221 hp 6.875 kW/kg 4.18 hp/lb Electric Vehicle, Drive eO

ElectriFly GPMG5220 Brushless DC[26] 0.133 kg 0.29 lb 1.035 kW 1.388 hp 7.78 kW/kg 4.73 hp/lb Radio-controlled aircraft

Remy HVH250-090-POC3 Brushless DC[27] 33.5 kg 74 lb 297 kW 398 hp 8.87 kW/kg 5.39 hp/lb Electric Vehicle

EMRAX268 Brushless AC[28] 19.9 kg 44 lb 200 kW 270 hp 10.05 kW/kg 6.12 hp/lb Battery Electric Air Plane

Full vehicle power-to-weight ratio shown below

Fluid engines and fluid pumps Fluids (liquid and gas) can be used to transmit and/or store energy using pressure and other fluid properties. Hydraulic
Hydraulic
(liquid) and pneumatic (gas) engines convert fluid pressure into other desirable mechanical or electrical work. Fluid pumps convert mechanical or electrical work into movement or pressure changes of a fluid, or storage in a pressure vessel.

Fluid Powerplant type Dry Weight Peak Power Output Power-to-weight ratio

SI English SI English SI English

PlatypusPower Q2/200 hydroelectric turbine[29] 43 kg 95 lb 2 kW 2.7 hp 0.047 kW/kg 0.029 hp/lb

PlatypusPower PP20/200 hydroelectric turbine[29] 330 kg 728 lb 20 kW 27 hp 0.060 kW/kg 0.037 hp/lb

Atlas Copco
Atlas Copco
LZL 35 pneumatic motor[30] 20 kg 44.1 lb 6.5 kW 8.7 hp 0.33 kW/kg 0.20 hp/lb

Atlas Copco
Atlas Copco
LZB 14 pneumatic motor[31] 0.30 kg 0.66 lb 0.16 kW 0.22 hp 0.53 kW/kg 0.33 hp/lb

Bosch 0 607 954 307 pneumatic motor[32] 0.32 kg 0.71 lb 0.1 kW 0.13 hp 0.31 kW/kg 0.19 hp/lb

Atlas Copco
Atlas Copco
LZB 46 pneumatic motor[33] 1.2 kg 2.65 lb 0.84 kW 1.13 hp 0.7 kW/kg 0.43 hp/lb

Bosch 0 607 957 307 pneumatic motor[32] 1.7 kg 3.7 lb 0.74 kW 0.99 hp 0.44 kW/kg 0.26 hp/lb

SAI GM7 radial piston hydraulic motor[34] 300 kg 661 lb 250 kW 335 hp 0.83 kW/kg 0.50 hp/lb

SAI GM3 radial piston hydraulic motor[35] 15 kg 33 lb 15 kW 20 hp 1 kW/kg 0.61 hp/lb

Denison GOLD CUP P14 axial piston hydraulic motor[36] 110 kg 250 lb 384 kW 509 hp 3.5 kW/kg 2.0 hp/lb

Denison TB vane pump[37] 7 kg 15 lb 40.2 kW 53.9 hp 5.7 kW/kg 3.6 hp/lb

Thermoelectric generators and electrothermal actuators A variety of effects can be harnessed to produce thermoelectricity, thermionic emission, pyroelectricity and piezoelectricity. Electrical resistance and ferromagnetism of materials can be harnessed to generate thermoacoustic energy from an electric current.

Thermoelectric Powerplant type Dry Weight Peak Power Output Power-to-weight ratio Example Use

Teledyne
Teledyne
238Pu GPHS-RTG
GPHS-RTG
1980[38][39] 56 kg 123 lb 285 W 0.39 hp 5.09 W/kg 0.003 hp/lb Galileo probe, New Horizons
New Horizons
probe

Boeing
Boeing
238Pu MMRTG MSL[39] 44.1 kg 97.2 lb 123 W 0.16 hp 2.79 W/kg 0.002 hp/lb MSL Curiosity rover

HZ-20 thermoelectric module 0.115 kg 0.254 lb 19 W 0.025 hp 165 W/kg 0.098 hp/lb Hi-Z Technology Inc.

Electrochemical (galvanic) and electrostatic cell systems (Closed cell) batteries All electrochemical cell batteries deliver a changing voltage as their chemistry changes from "charged" to "discharged". A nominal output voltage and a cutoff voltage are typically specified for a battery by its manufacturer. The output voltage falls to the cutoff voltage when the battery becomes "discharged". The nominal output voltage is always less than the open-circuit voltage produced when the battery is "charged". The temperature of a battery can affect the power it can deliver, where lower temperatures reduce power. Total energy delivered from a single charge cycle is affected by both the battery temperature and the power it delivers. If the temperature lowers or the power demand increases, the total energy delivered at the point of "discharge" is also reduced. Battery discharge profiles are often described in terms of a factor of battery capacity. For example, a battery with a nominal capacity quoted in ampere-hours (Ah) at a C/10 rated discharge current (derived in amperes) may safely provide a higher discharge current – and therefore higher power-to-weight ratio – but only with a lower energy capacity. Power-to-weight ratio for batteries is therefore less meaningful without reference to corresponding energy-to-weight ratio and cell temperature. This relationship is known as Peukert's law.[40]

Battery type Volts Temp. Energy-to-weight ratio Power-to-weight ratio

Energizer
Energizer
675 Mercury Free Zinc-air battery[41] 1.4V 21 °C 1,645 kJ/kg to 0.9 V 1.65 W/kg 2.24 mA

GE Durathon™ NaMx A2 UPS Molten salt battery[42] 54.2V -40–65 °C 342 kJ/kg to 37.8 V 15.8 W/kg C/6 (76 A)

Panasonic
Panasonic
R03 AAA Zinc–carbon battery[43][44] 1.5 V 20±2 °C 47 kJ/kg 20 mA to 0.9 V 3.3 W/kg 20 mA

88 kJ/kg 150 mA to 0.9 V 24 W/kg 150 mA

Eagle-Picher
Eagle-Picher
SAR-10081 60Ah 22-cell Nickel–hydrogen battery[45] 27.7 V 10 °C 192 kJ/kg C/2 to 22 V 23 W/kg C/2

165 kJ/kg C/1 to 22 V 46 W/kg C/1

ClaytonPower 400Ah Lithium-ion battery[46][47] 12V

617 kJ/kg 85.7 W/kg C/1 (175 A)

Energizer
Energizer
522 Prismatic Zn–MnO2 Alkaline battery[48] 9 V 21 °C 444 kJ/kg 25 mA to 4.8 V 4.9 W/kg 25 mA

340 kJ/kg 100 mA to 4.8 V 19.7 W/kg 100 mA

221 kJ/kg 500 mA to 4.8 V 99 W/kg 500 mA

Panasonic
Panasonic
HHR900D 9.25Ah Nickel–metal hydride
Nickel–metal hydride
battery[49] 1.2 V 20 °C 209.65 kJ/kg to 0.7 V 11.7 W/kg C/5

58.2 W/kg C/1

116 W/kg 2C

URI 1418Ah replaceable anode Aluminium–air battery
Aluminium–air battery
model[50][51] 244.8 V 60 °C 4680 kJ/kg 130.3 W/kg (142 A)

LG Chemical/CPI E2 6Ah LiMn2O4 Lithium-ion polymer battery[52][53] 3.8 V 25 °C 530.1 kJ/kg C/2 to 3.0 V 71.25 W/kg

513 kJ/kg 1C to 3.0 V 142.5 W/kg

Saft 45E Fe Super-Phosphate Lithium iron phosphate battery[54] 3.3 V 25 °C 581 kJ/kg C to 2.5 V 161 W/kg

560 kJ/kg 1.14 C to 2.0 V 183 W/kg

0.73 kJ/kg 2.27 C to 1.5 V 367 W/kg

Energizer
Energizer
CH35 C 1.8Ah Nickel–cadmium battery[55] 1.2 V 21 °C 152 kJ/kg C/10 to 1 V 4 W/kg C/10

147.1 kJ/kg 5C to 1 V 200 W/kg 5 C

Firefly Energy Oasis FF12D1-G31 6-cell 105Ah VRLA battery[56] 12 V 25 °C 142 kJ/kg C/10 to 7.2 V 4 W/kg C/10

-1 8 °C 7 kJ/kg CCA to 7.2V 234 W/kg CCA (625A)

0 °C 9 kJ/kg CA to 7.2 V 300 W/kg CA (800 A)

Panasonic
Panasonic
CGA103450A 1.95Ah LiCoO2 Lithium-ion battery[57] 3.7 V 20 °C 666 kJ/kg C/5.3 to 2.75 V 35 W/kg C/5.3

0 °C 633 kJ/kg C/1 to 2.75 V 176 W/kg C/1

20 °C 655 kJ/kg C/1 to 2.75 V 182 W/kg C/1

20 °C 641 kJ/kg 2C to 2.75 V 356 W/kg 2C

Electric Fuel
Fuel
Battery Corp. UUV
UUV
120Ah Zinc–air fuel cell[58]

630 kJ/kg 500 W/kg C/1

Sion Power 2.5Ah Lithium-sulfur battery[59] 2.15 V 25 °C 1260 kJ/kg 70 W/kg C/5

1209 kJ/kg 672 W/kg 2C

Stanford Prussian Blue
Prussian Blue
durable Potassium-ion battery[60] 1.35 V room 54 kJ/kg 13.8 W/kg C/1

50 kJ/kg 138 W/kg 10C

39 kJ/kg 693 W/kg 50C

Maxell / Yuasa / AIST Nickel–metal hydride
Nickel–metal hydride
lab prototype[61]

45 °C

980 W/kg

Toshiba
Toshiba
SCiB cell 4.2Ah Li2TiO3 Lithium-ion battery[62][63] 2.4 V 25 °C 242 kJ/kg 67.2 W/kg C/1

218 kJ/kg 4000 W/kg 12C

Ionix Power Systems LiMn2O4 Lithium-ion battery
Lithium-ion battery
lab model[64]

lab 270 kJ/kg 1700 W/kg

lab 29 kJ/kg 4900 W/kg

A123 Systems
A123 Systems
26650 Cell 2.3Ah LiFePO4 Lithium-ion battery[65][66] 3.3 V -20 °C 347 kJ/kg C/1 to 2V 108 W/kg C/1

0 °C 371 kJ/kg C/1 to 2 V 108 W/kg C/1

25 °C 390 kJ/kg C/1 to 2 V 108 W/kg C/1

25 °C 390 kJ/kg 27C to 2 V 3300 W/kg 27C

25 °C 57 kJ/kg 32C to 2 V 5657 W/kg 32C

Saft VL 6Ah Lithium-ion battery[67] 3.65 V -20 °C 154 kJ/kg 30C to 2.5 V 41.4 W/kg 30C (180 A)

182 kJ/kg 1C to 2.5 V 67.4 W/kg 1C

25 °C 232 kJ/kg 1C to 2.5 V 64.4 W/kg 1C

233 kJ/kg 58.3C to 2.5 V 3757 W/kg 58.3C (350A)

34 kJ/kg 267C to 2.5 V 17176 W/kg 267C (1.6kA)

4.29 kJ/kg 333C to 2.5 V 21370 W/kg 333C (2kA)

Electrostatic, electrolytic and electrochemical capacitors Capacitors store electric charge onto two electrodes separated by an electric field semi-insulating (dielectric) medium. Electrostatic capacitors feature planar electrodes onto which electric charge accumulates. Electrolytic capacitors use a liquid electrolyte as one of the electrodes and the electric double layer effect upon the surface of the dielectric-electrolyte boundary to increase the amount of charge stored per unit volume. Electric double-layer capacitors extend both electrodes with a nanopourous material such as activated carbon to significantly increase the surface area upon which electric charge can accumulate, reducing the dielectric medium to nanopores and a very thin high permittivity separator. While capacitors tend not to be as temperature sensitive as batteries, they are significantly capacity constrained and without the strength of chemical bonds suffer from self-discharge. Power-to-weight ratio of capacitors is usually higher than batteries because charge transport units within the cell are smaller (electrons rather than ions), however energy-to-weight ratio is conversely usually lower.

Capacitor
Capacitor
type Capacity Volts Temp. Energy-to-weight ratio Power-to-weight ratio

ACT Premlis Lithium ion capacitor[68] 2000 F 4.0 V 25 °C 54 kJ/kg to 2.0 V 44.4 W/kg @ 5 A

31 kJ/kg to 2.0 V 850 W/kg @ 10 A

Nesccap Electric double-layer capacitor[69] 5000 F 2.7 V 25 °C 19.58 kJ/kg to 1.35 V 5.44 W/kg C/1 (1.875 A)

5.2 kJ/kg to 1.35 V 5,200 W/kg[70] @ 2,547A

EEStor EESU barium titanate supercapacitor[71] 30.693 F 3500 V 85 °C 1471.98 kJ/kg 80.35 W/kg C/5

1471.98 kJ/kg 8,035 W∕kg 20 C

General Atomics
General Atomics
3330CMX2205 High Voltage
Voltage
Capacitor[72] 20.5 mF 3300 V ? °C 2.3 kJ/kg 6.8 MW/kg @ 100 kA

Fuel cell
Fuel cell
stacks and flow cell batteries Fuel
Fuel
cells and flow cells, although perhaps using similar chemistry to batteries, have the distinction of not containing the energy storage medium or fuel. With a continuous flow of fuel and oxidant, available fuel cells and flow cells continue to convert the energy storage medium into electric energy and waste products. Fuel
Fuel
cells distinctly contain a fixed electrolyte whereas flow cells also require a continuous flow of electrolyte. Flow cells typically have the fuel dissolved in the electrolyte.

Fuel cell
Fuel cell
type Dry weight Power-to-weight ratio Example Use

Redflow Power+BOS ZB600 10kWh ZBB[73] 900 kg 5.6 W/kg (9.3 W/kg peak) Rural Grid support

Ceramic Fuel
Fuel
Cells BlueGen MG 2.0 CHP SOFC[74] 200 kg 10 W/kg

15 W/kg CHP

MTU Friedrichshafen
MTU Friedrichshafen
240 kW MCFC HotModule 2006 20,000 kg 12 W/kg

Smart Fuel
Fuel
Cell Jenny 600S 25W DMFC[75] 1.7 kg 14.7 W/kg Portable military electronics

UTC Power
UTC Power
PureCell 400 kW PAFC[76] 27,216 kg 14.7 W/kg

GEFC 50V50A-VRB Vanadium redox battery[77] 80 kg 31.3 W/kg (125 W/kg peak)

Ballard Power Systems Xcellsis HY-205 205 kW PEMFC[78] 2,170 kg 94.5 W/kg Mercedes-Benz
Mercedes-Benz
Citaro O530BZ[•]

UTC Power/ NASA
NASA
12 kW AFC[79] 122 kg 98 W/kg Space Shuttle
Space Shuttle
orbiter[•]

Ballard Power Systems FCgen-1030 1.2 kW CHP PEMFC[80] 12 kg 100 W/kg Residential cogeneration

Ballard Power Systems FCvelocity-HD6 150 kW PEMFC[80] 400 kg 375 W/kg Bus and heavy duty

NASA
NASA
Glenn Research Center 50 W SOFC[81] 0.071 kg 700 W/kg

Honda
Honda
2003 43 kW FC Stack PEMFC[82][•] 43 kg 1000 W/kg Honda
Honda
FCX Clarity[•]

Lynntech, Inc. PEMFC lab prototype[83] 0.347 kg 1,500 W/kg

Full vehicle power-to-weight ratio shown below

Photovoltaics

Photovoltaic
Photovoltaic
Panel type Power-to-weight ratio

Thyssen Solartec 128W Nanocrystalline Si Triplejunction PV module[84] 6 W/kg

Suntech/ UNSW
UNSW
HiPerforma PLUTO220-Udm 220W Ga-F22 Polycrystalline Si PERC PV module[85] 13.1 W/kg STP

9.64 W/kg nominal

Global Solar
Global Solar
PN16015A 62W CIGS polycrystalline thin film PV module[86] 40 W/kg

Able (AEC) PUMA 6 kW GaInP2/GaAs/Ge-on-Ge Triplejunction PV array[87] 65 W/kg

ITO/InP on Kapton foil 2000 W/kg[89]

Vehicles Power-to-weight ratios for vehicles are usually calculated using curb weight (for cars) or wet weight (for motorcycles), that is, excluding weight of the driver and any cargo. This could be slightly misleading, especially with regard to motorcycles, where the driver might weigh 1/3 to 1/2 as much as the vehicle itself. In the sport of competitive cycling athlete's performance is increasingly being expressed in VAMs and thus as a power-to-weight ratio in W/kg. This can be measured through the use of a bicycle powermeter or calculated from measuring incline of a road climb and the rider's time to ascend it.[90] Utility and practical vehicles Most vehicles are designed to meet passenger comfort and cargo carrying requirements. Different designs trade off power-to-weight ratio to increase comfort, cargo space, fuel economy, emissions control, energy security and endurance. Reduced drag and lower rolling resistance in a vehicle design can facilitate increased cargo space without increase in the (zero cargo) power-to-weight ratio. This increases the role flexibility of the vehicle. Energy security considerations can trade off power (typically decreased) and weight (typically increased), and therefore power-to-weight ratio, for fuel flexibility or drive-train hybridisation. Some utility and practical vehicle variants such as hot hatches and sports-utility vehicles reconfigure power (typically increased) and weight to provide the perception of sports car like performance or for other psychological benefit. A locomotive generally must be very heavy in order to develop enough adhesion on the rails to start a train. As the coefficient of friction between steel wheels and rails seldom exceeds 0.25 in most cases, improving a locomotive's power-to-weight ratio is often counterproductive. However, the choice of power transmission system, such as variable-frequency drive versus direct current drive, may support a higher power-to-weight ratio by better managing propulsion power. Notable low ratio

Vehicle Power Vehicle
Vehicle
Weight Power to Weight ratio

Benz Patent Motorwagen
Benz Patent Motorwagen
954 cc 1886[91] 560 W / 0.75 bhp 265 kg / 584 lb 2.1 W/kg / 779 lb/hp

Stephenson's Rocket
Stephenson's Rocket
0-2-2
0-2-2
steam locomotive with tender 1829[92] 15 kW / 20 bhp 4,320 kg / 9524 lb 3.5 W/kg / 476 lb/hp

CBQ Zephyr streamliner diesel locomotive with railcars 1934[93] 492 kW / 660 bhp 94 t / 208,000 lb 5.21 W/kg / 315 lb/hp

Alberto Contador's Verbier climb 2009 Tour de France
2009 Tour de France
on Specialized bike[90] 420 W / 0.56 bhp 62 kg / 137 lb 6.7 W/kg / 245 lb/hp

Force Motors
Force Motors
Minidor Diesel 499 cc auto rickshaw[94][95] 6.6 kW / 8.8 bhp 700 kg / 1543 lb 9 W/kg / 175 lb/hp

PRR Q2
PRR Q2
4-4-6-4 steam locomotive with tender 1944 5,956 kW / 7,987 bhp 475.9 t / 1,049,100 lb 12.5 W/kg / 131 lb/hp

Mercedes-Benz
Mercedes-Benz
Citaro O530BZ H2 fuel cell bus 2002[96] 205 kW / 275 bhp 14,500 kg / 32,000 lb 14.1 W/kg / 116 lb/hp

TGV
TGV
BR Class 373 high-speed Eurostar
Eurostar
Trainset 1993 12,240 kW / 16,414 bhp 816 t / 1,798,972 lb 15 W/kg / 110 lb/hp

General Dynamics
General Dynamics
M1 Abrams
M1 Abrams
Main battle tank
Main battle tank
1980[97] 1,119 kW / 1500 bhp 55.7 t / 122,800 lb 20.1 W/kg / 81.9 lb/hp

BR Class 43 high-speed diesel electric locomotive 1975 1,678 kW / 2,250 bhp 70.25 t / 154,875 lb 23.9 W/kg / 69 lb/hp

GE AC6000CW
GE AC6000CW
diesel electric locomotive 1996 4,660 kW / 6,250 bhp 192 t / 423,000 lb 24.3 W/kg / 68 lb/hp

BR Class 55 Napier Deltic
Napier Deltic
diesel electric locomotive 1961 2,460 kW / 3,300 bhp 101 t / 222,667 lb 24.4 W/kg / 68 lb/hp

International CXT
International CXT
2004[98] 164 kW / 220 bhp 6,577 kg / 14500 lb 25 W/kg / 66 lb/hp

Ford Model T
Ford Model T
2.9 L flex-fuel 1908 15 kW / 20 bhp 540 kg / 1,200 lb 28 W/kg / 60 lb/hp

TH!NK City 2008[99] 30 kW / 40 bhp 1038 kg / 2,288 lb 28.9 W/kg / 56.9 lb/hp

Messerschmitt KR200
Messerschmitt KR200
Kabinenroller 191 cc 1955 6 kW / 8.2 bhp 230 kg / 506 lb 30 W/kg / 50 lb/hp

Wright Flyer
Wright Flyer
1903 9 kW / 12 bhp 274 kg / 605 lb 33 W/kg / 50 lb/hp

Tata Nano
Tata Nano
624 cc 2008 26 kW / 35 bhp 635 kg / 1,400 lb 41.0 W/kg / 40 lb/hp

Bombardier JetTrain
JetTrain
high-speed gas turbine-electric locomotive 2000[100] 3,750 kW / 5,029 bhp 90,750 kg / 200,000 lb 41.2 W/kg / 39.8 lb/hp

Suzuki
Suzuki
MightyBoy 543 cc 1988 23 kW / 31 bhp 550 kg / 1,213 lb 42 W/kg / 39 lb/hp

Mitsubishi i MiEV
Mitsubishi i MiEV
2009[101] 47 kW / 63 bhp 1,080 kg / 2,381 lb 43.5 W/kg / 37.8 lb/hp

Holden FJ
Holden FJ
2,160 cc 1953[102] 44.7 kW / 60 bhp 1,021 kg / 2,250 lb 43.8 W/kg / 37.5 lb/hp

Chevrolet
Chevrolet
Kodiak/ GMC Topkick LYE 6.6 L 2005[1][103] 246 kW / 330 bhp 5126 kg / 11,300 lb 48 W/kg / 34.2 lb/hp

DOE/NASA/0032-28 Chevrolet Celebrity
Chevrolet Celebrity
502 cc ASE Mod II 1985[5] 62.3 kW / 83.5 bhp 1,297 kg / 2,860 lb 48.0 W/kg / 34.3 lb/hp

Suzuki
Suzuki
Alto 796 cc 2000 35 kW / 46 bhp 720 kg / 1,587 lb 49 W/kg / 35 lb/hp

Land Rover Defender
Land Rover Defender
2.4 L 1990[104] 90 kW / 121 bhp 1,837 kg / 4,050 lb 49 W/kg / 33 lb/hp

Common power

Vehicle Power Vehicle
Vehicle
Weight Power to Weight ratio

Toyota
Toyota
Prius 1.8 L 2010 (petrol only)[105] 73 kW / 98 bhp 1,380 kg / 3,042 lb 53 W/kg / 31 lb/hp

Bajaj Platina Naked 100 cc 2006[106] 6 kW / 8 bhp 113 kg / 249 lb 53 W/kg / 31 lb/hp

Subaru R2
Subaru R2
type S 2003[107] 47 kW / 63 bhp 830 kg / 1,830 lb 57 W/kg / 29 lb/hp

Ford Fiesta
Ford Fiesta
ECOnetic 1.6 L TDCi 5dr 2009[108] 66 kW / 89 bhp 1,155 kg / 2,546 lb 57 W/kg / 29 lb/hp

Volvo C30
Volvo C30
1.6D DRIVe S/S 3dr Hatch 2010[109] 80 kW / 108 bhp 1,347 kg / 2,970 lb 59.4 W/kg / 27.5 lb/hp

Ford Focus
Ford Focus
ECOnetic 1.6 L TDCi 5dr Hatch 2009[110] 81 kW / 108 bhp 1,357 kg / 2,992 lb 59.7 W/kg / 27 lb/hp

Ford Focus
Ford Focus
1.8 L Zetec S TDCi 5dr Hatch 2009[111] 84 kW / 113 bhp 1,370 kg / 3,020 lb 61 W/kg / 27 lb/hp

Honda
Honda
FCX Clarity 4 kg Hydrogen
Hydrogen
2008[112] 100 kW / 134 bhp 1,600 kg / 3,528 lb 63 W/kg / 26 lb/hp

Hummer H1
Hummer H1
6.6 L V8 2006[113] 224 kW / 300 bhp 3,559 kg / 7,847 lb 63 W/kg / 26 lb/hp

Audi A2
Audi A2
1.4 L TDI 90 type S 2003[114] 66 kW / 89 bhp 1,030 kg / 2,270 lb 64 W/kg / 25 lb/hp

Opel/Vauxhall/Holden/ Chevrolet
Chevrolet
Astra 1.7 L CTDi 125 2010[115] 92 kW / 123 bhp 1,393 kg / 3,071 lb 66 W∕kg / 24.9 lb∕hp

Mini
Mini
(new) Cooper 1.6D 2007[116] 81 kW / 108 bhp 1,185 kg / 2,612 lb 68 W/kg / 24 lb/hp

Toyota
Toyota
Prius 1.8 L 2010 (electric boost)[105] 100 kW / 134 bhp 1,380 kg / 3,042 lb 72 W/kg / 23 lb/hp

Ford Focus
Ford Focus
2.0 L Zetec S TDCi 5dr Hatch 2009[117] 100 kW / 134 bhp 1,370 kg / 3,020 lb 73 W/kg / 23 lb/hp

General Motors
General Motors
EV1 electric car Gen II 1998[118] 102.2 kW / 137 bhp 1,400 kg / 3,086 lb 73 W/kg / 23 lb/hp

Toyota
Toyota
Venza I4 2.7 L FWD 2009[119] 136 kW / 182 bhp 1,706 kg / 3,760 lb 80 W/kg / 20.7 lb/hp

Ford Focus
Ford Focus
2.0 L Zetec S 5dr Hatch 2009[120] 107 kW / 143 bhp 1,327 kg / 2,926 lb 81 W/kg / 20 lb/hp

Fiat Grande Punto
Fiat Grande Punto
1.6 L Multijet 120 2005[121] 88 kW / 118 bhp 1,075 kg / 2,370 lb 82 W/kg / 20 lb/hp

Mini
Mini
(classic) 1275GT 1969 57 kW / 76 bhp 686 kg / 1,512 lb 83 W/kg / 20 lb/hp

Opel/Vauxhall/Holden/ Chevrolet
Chevrolet
Astra 2.0 L CTDi 160 2010[122] 118 kW / 158 bhp 1,393 kg / 3,071 lb 85 W∕kg / 19.4 lb∕hp

Ford Focus
Ford Focus
2.0 auto 2007[123] 104.4 kW / 140 bhp 1,198 kg / 2,641 lb 87.1 W/kg / 19 lb/hp

Subaru Legacy/Liberty 2.0R 2005[124] 121 kW / 162 bhp 1,370 kg / 3,020 lb 88 W/kg / 19 lb/hp

Subaru Outback
Subaru Outback
2.5i 2008[125] 130.5 kW / 175 bhp 1,430 kg / 3,153 lb 91 W/kg / 18 lb/hp

Smart Fortwo
Smart Fortwo
1.0 L Brabus 2009[126] 72 kW / 97 bhp 780 kg / 1,720 lb 92 W/kg / 18 lb/hp

Toyota
Toyota
Venza V6 3.5 L AWD 2009[119] 200 kW / 268 bhp 1,835 kg / 4,045 lb 109 W/kg / 15 lb/hp

Toyota
Toyota
Venza I4 2.7 L FWD 2009[119] with Lotus mass reduction[127] 136 kW / 182 bhp 1,210 kg / 2,667 lb 112.2 W/kg / 14.7 lb/hp

Toyota
Toyota
Hilux V6 DOHC
DOHC
4 L 4×2 Single Cab Pickup ute 2009[128] 175 kW / 235 bhp 1,555 kg / 3,428 lb 112.5 W/kg / 14.6 lb/hp

Toyota
Toyota
Venza V6 3.5 L FWD 2009[119] 200 kW / 268 bhp 1,755 kg / 3,870 lb 114 W/kg / 14.4 lb/hp

Performance luxury, roadsters and mild sports Increased engine performance is a consideration, but also other features associated with luxury vehicles. Longitudinal engines are common. Bodies vary from hot hatches, sedans (saloons), coupés, convertibles and roadsters. Mid-range dual-sport and cruiser motorcycles tend to have similar power-to-weight ratios.

Vehicle Power Vehicle
Vehicle
Weight Power to Weight ratio

Honda
Honda
Accord sedan V6 2011 202 kW / 271 bhp 1630 kg / 3593 lb 124 W/kg / 13.26 lb/hp

Mini
Mini
(new) Cooper 1.6T S JCW 2008[129] 155 kW / 208 bhp 1205 kg / 2657 lb 129 W/kg / 13 lb/hp

Mazda RX-8
Mazda RX-8
1.3 L Wankel 2003 173 kW / 232 bhp 1309 kg / 2888 lb 132 W/kg / 12 lb/hp

Holden
Holden
Statesman/Caprice / Buick Park Avenue / Daewoo Veritas 6 L V8 2007[130] 270 kW / 362 bhp 1891 kg / 4170 lb 143 W/kg / 12 lb/hp

Kawasaki KLR650
Kawasaki KLR650
Gasoline
Gasoline
DualSport 650 cc 26 kW / 35 bhp 182 kg / 401 lb 143 W/kg / 11 lb/hp

NATO
NATO
HTC M1030M1 Diesel/Jet fuel DualSport 670 cc[131] 26 kW / 35 bhp 182 kg / 401 lb 143 W/kg / 11 lb/hp

Harley-Davidson FLSTF Softail Fat Boy Cruiser 1,584 cc 2009[132] 47 kW / 63 bhp 324 kg / 714 lb 145 W/kg / 11.3 lb/hp

BMW 7 Series
BMW 7 Series
760Li 6 L V12 2006[133] 327 kW / 439 bhp 2250 kg / 4960 lb 145 W/kg / 11 lb/hp

Subaru Impreza WRX STi
Subaru Impreza WRX STi
2.0 L 2008[134] 227 kW / 304 bhp 1530 kg / 3373 lb 148 W/kg / 11 lb/hp

Honda
Honda
S2000 roadster 1999[citation needed] 183.88 kW / 240 bhp 1250 kg / 2723 lb 150 W/kg / 11 lb/hp

GMH HSV Clubsport
HSV Clubsport
/ GMV VXR8 / GMC CSV CR8 / Pontiac G8 6 L V8 2006[135] 317 kW / 425 bhp 1831 kg / 4037 lb 173 W/kg / 9.5 lb/hp

Tesla Roadster 2011[136] 215 kW / 288 bhp 1235 kg / 2723 lb 174 W/kg / 9.5 lb/hp

Sports vehicles and aircraft Power-to-weight ratio is an important vehicle characteristic that affects the acceleration and handling – and therefore the driving enjoyment – of any sports vehicle. Aircraft also depend on high power-to-weight ratio to achieve sufficient lift.

Vehicle Power Vehicle
Vehicle
Weight Power to Weight ratio

Lotus Elise
Lotus Elise
SC 2008 163 kW / 218 bhp 910 kg / 2006 lb 179 W/kg / 9.20 lb/hp

Ferrari Testarossa
Ferrari Testarossa
1984 291 kW / 390 bhp 1506 kg / 3320 lb 193 W/kg / 8.51 lb/hp

Citroën DS3 WRC
Citroën DS3 WRC
rally car 2011[137] 235 kW / 315 bhp 1200 kg / 2,645.5 lb 196 W/kg / 8.40 lb/hp

Artega GT[138] 220 kW / 300 bhp 1100 kg / 2425 lb 200 W/kg / 8.08 lb/hp

Lotus Exige
Lotus Exige
GT3 2006[139] 202.1 kW / 271 bhp 980 kg / 2160 lb 206 W/kg / 7.97 lb/hp

Chevrolet
Chevrolet
Corvette C6 2008[140] 321 kW / 430 bhp 1441 kg / 3177 lb 223 W/kg / 7.39 lb/hp

Nissan GT-R
Nissan GT-R
R35 3.8L Turbo V6[141] 406 kW / 545 bhp 1779 kg / 3922 lb[142] 228 W/kg / 7.20 lb/hp

Tesla Model S
Tesla Model S
P85D 85kWh AWD Performance[143] 515 kW / 691 bhp 2239 kg / 4936 lb 230 W/kg / 7.14 lb/hp

Dodge Charger SRT Hellcat 6.2L Hemi
Hemi
V8[141] 527 kW / 707 bhp 2075 kg / 4575 lb 254 W/kg / 6.47 lb/hp

Chevrolet
Chevrolet
Corvette C6 Z06[140] 376 kW / 505 bhp 1421 kg / 3133 lb 265 W/kg / 6.2 lb/hp

Porsche 911 GT2 2007 390 kW / 523 bhp 1440 kg / 3200 lb 271 W/kg / 6.1 lb/hp

Lamborghini Murciélago
Lamborghini Murciélago
LP 670-4 SV 2009[144] 493 kW / 661 bhp 1550 kg / 3417 lb 318 W/kg / 5.17 lb/hp

Mercedes-Benz
Mercedes-Benz
C- Coupé
Coupé
DTM touring car 2012[145] 343 kW / 460 bhp 1110 kg / 2,447 lb 309 W/kg / 5.32 lb/hp

Sector111 Drakan Spyder[146] 321 kW / 430 bhp 907 kg / 2000 lb 354 W/kg / 4.65 lb/hp

McLaren F1
McLaren F1
GT 1997[147] 467.6 kW / 627 bhp 1220 kg / 2690 lb 403 W/kg / 4.3 lb/hp

BAC Mono
BAC Mono
2011[148] 213 kW / 285 bhp 540 kg / 1190 lb 394 W/kg / 4.18 lb/hp

Porsche 918
Porsche 918
Spyder[149] 661 kW / 887 bhp 1656 kg / 3650 lb 399 W/kg / 4.16 lb/hp

Lancia Delta S4
Lancia Delta S4
group B 1985[150] 350 kW / 480 bhp 890 kg / 1,962 lb 393 W/kg / 4.08 lb/hp

Ariel Atom
Ariel Atom
3S 2014[151] 272 kW / 365 bhp 639 kg / 1400 lb 426 W/kg / 3.84 lb/hp

Bombardier Dash 8
Bombardier Dash 8
Q400 turboprop airliner[152] 7,562 kW / 10,142 bhp 17,185 kg / 37,888 lb 440 W/kg / 3.7 lb/hp

Ferrari LaFerrari[153] 708 kW / 950 bhp 1585 kg / 3495 lb 447 W/kg / 3.68 lb/hp

McLaren P1
McLaren P1
2013[154] 673 kW / 903 bhp 1490 kg / 3280 lb 452 W/kg / 3.63 lb/hp

Supermarine Spitfire
Supermarine Spitfire
Fighter aircraft
Fighter aircraft
1936 1,096 kW / 1,470 bhp 2,309 kg / 5,090 lb 475 W/kg / 3.46 lb/hp

Messerschmitt Bf 109
Messerschmitt Bf 109
Fighter aircraft
Fighter aircraft
1935 1,085 kW / 1,455 bhp 2,247 kg / 4,954 lb 483 W/kg / 3.40 lb/hp

Thunderbolt Land speed record
Land speed record
car 3504 kW / 4700 bhp 7 t / 15432 lb 500 W/kg / 3.28 lb/hp

Ferrari FXX
Ferrari FXX
2005 597 kW / 801 bhp 1155 kg / 2546 lb 517 W/kg / 3.18 lb/hp

Polaris Industries
Polaris Industries
Assault Snowmobile 2009[155] 115 kW / 154 bhp 221 kg / 487 lb 523 W/kg / 3.16 lb/hp

Audi R10 TDI
Audi R10 TDI
Le Mans Prototype
Le Mans Prototype
2006[156] 485 kW / 650 bhp 925 kg / 2,039 lb 524 W/kg / 3.13 lb/hp

Ultima GTR
Ultima GTR
720 2006[157] 536.9 kW / 720 bhp 920 kg / 2183 lb 583 W/kg / 3.03 lb/hp

Honda
Honda
CBR1000RR 2009 133 kW / 178 bhp 199 kg / 439 lb 668 W/kg / 2.46 lb/hp

Ariel Atom
Ariel Atom
500 V8 2011 372 kW / 500 bhp 550 kg / 1212 lb 676.3 W/kg / 2.47 lb/hp

BMW S1000RR
BMW S1000RR
2009 144 kW / 193 bhp 207.7 kg / 458 lb 693.3 W/kg / 2.37 lb/hp

Peugeot 208 T16
Peugeot 208 T16
Pikes Peak 2013 652 kW / 875 bhp 875 kg / 1930 lb 745 W/kg / 2.21 lb/hp

Koenigsegg One:1 2015 1000 kW / 1341 bhp 1310 kg / 2888 lb 763 W/kg / 2.15 lb/hp

Nissan R90C
Nissan R90C
Group C
Group C
1990[158] 746 kW / 1000 bhp 900 kg / 1984 lb 829 W/kg / 1.98 lb/hp

Ducati 1199
Ducati 1199
Panigale R (WSB) 2012 151 kW / 202 bhp 165 kg / 364 lb 915 W/kg / 1.80 lb/hp

KillaCycle Drag racing
Drag racing
electric motorcycle 260 kW / 350 bhp 281 kg / 619 lb 925 W/kg / 1.77 lb/hp

MTT Turbine Superbike
MTT Turbine Superbike
2008[159] 213.3 kW / 286 bhp 227 kg / 500 lb 940 W/kg / 1.75 lb/hp

Vyrus
Vyrus
987 C3 4V V supercharged motorcycle 2010[160] 157.3 kW / 211 bhp 158 kg / 348.3 lb 996 W/kg / 1.65 lb/hp

Kawasaki H2R Motorcycle
Motorcycle
2015[161] 223 kW / 300 bhp 216 kg / 476 lb 1032 W/kg / 1.43 lb/hp

BMW
BMW
Williams FW27
Williams FW27
Formula One
Formula One
2005[162] 690 kW / 925 bhp 600 kg / 1323 lb 1150 W/kg / 1.58 lb/hp

Honda
Honda
RC211V MotoGP 2004-6 176.73 kW / 237 bhp 148 kg / 326 lb 1194 W/kg / 1.37 lb/hp

Boeing
Boeing
747-300[11][dead link] at Mach 0.84 cruise, 35,000 ft altitude[disputed – discuss] 245 MW / 328,656 bhp 178.1 t / 392,800 lb 1376 W/kg / 1.20 lb/hp

John Force Racing
John Force Racing
Funny Car
Funny Car
NHRA
NHRA
Drag Racing
Drag Racing
2008[163] 5,963.60 kW / 8,000 bhp 1043 kg / 2,300 lb 5717 W/kg / 0.30 lb/hp

Human Power to weight ratio is important in cycling, since it determines acceleration and the speed during hill climbs. Since a cyclist's power to weight output decreases with fatigue, it is normally discussed with relation to the length of time that he or she maintains that power. A professional cyclist can produce over 20 W/kg as a 5-second maximum.[164] See also

Energy density Engine
Engine
power Propulsive efficiency Specific output Thrust-to-weight ratio Vehicle
Vehicle
metrics von Kármán–Gabrielli diagram

References

^ a b c " General Motors
General Motors
2009 Data Book" (PDF). September 5, 2008. Archived from the original (PDF) on November 2, 2012.  ^ a b Ryan, Richard. "Lessons in Systems Engineering - The SSME Weight Growth History" (PDF). NASA.  ^ "The world's most powerful Engine
Engine
enters service" (Press release). Wärtsilä. 2006-09-12. Retrieved 2010-01-12.  ^ " Suzuki
Suzuki
Marine - DF25 - Features and Specifications". Suzuki. Archived from the original on January 31, 2010. Retrieved January 12, 2010.  ^ a b Noel P. Nightingale (October 1986). "Automotive Stirling Engine - Mod II Design Report" (PDF). NASA
NASA
Lewis Research Center. Retrieved July 16, 2010.  ^ Jane's 1989, p. 294. ^ "LM2500+ Marine Gas Turbine" (PDF). GE Aviation. Retrieved 2010-01-25.  ^ " Mazda
Mazda
- What Is A Rotary Engine?". Mazda. Archived from the original on January 17, 2010. Retrieved January 12, 2010.  ^ "UAV Wankel Engines". O.S. Engines. Archived from the original on 2010-01-04. Retrieved 2010-01-08.  ^ "Turbine details for SPT10-RX-H". Retrieved 2015-11-17.  ^ a b "LM6000 Marine Gas Turbine" (PDF). GE Aviation. Retrieved 2010-01-25.  ^ a b "GE's LM6000 Demonstrates Outstanding Reliability And Availability In First Two Years Of Commercial Service". GE Aviation. Retrieved 2010-01-25.  ^ a b " BMW
BMW
engines". All Formula One
Formula One
Info. Retrieved 2010-01-08.  ^ Wevers, Chris (31 May 2014). "The Most Powerful F1 Car Ever - GTspirit".  ^ "Model GE90-115B". GE Aviation. Archived from the original on 2003-01-17. Retrieved 2010-01-08.  ^ (in French) Jean-Claude Thevenin, Le turboréacteur, moteur des avions à réaction, AAAF, June 2004 (3rd edition). ^ " NASA
NASA
Fact Sheet: Space Shuttle
Space Shuttle
Main Engine
Engine
(SSME) Enhancements" (PDF). Marshall Space Flight Center, Huntsville, Alabama: NASA. March 2002. Archived from the original (PDF) on 2008-10-26.  ^ "High Performance Liquid Hydrogen
Hydrogen
Turbopumps". NASA. 1999-02-01. Archived from the original on 2007-12-06. Retrieved 2010-01-08.  ^ " Panasonic
Panasonic
MINAS-A4 AC Servo - Motor Specifications and Ratings 200V MSMA" (PDF). Archived from the original (PDF) on 2008-12-09. Retrieved 2010-01-26.  ^ "Cypress HPL Series Permanent Magnet Motors - Product Brochure" (PDF). Canopy Technologies, LLC. Retrieved 2010-01-26.  ^ Jewell, Geraint (2009-09-11). "Permanent Magnet Machines and Actuators" (PDF). Symposium on Materials for a Sustainable Future. Birmingham, England: Magnetic Materials Group, University of Birmingham. pp. 11–18. Retrieved 2010-05-14.  ^ "Himax Brushless Outrunner Motor HC6332-250" (PDF). Maxx Products International, Inc. Retrieved 2010-01-28.  ^ "Hi-Pa Drive". PML Flightlink. Archived from the original on April 10, 2009. Retrieved 2010-03-02.  ^ "Great Planes ElectriFly RimFire 65cc 80-85-160 Brushless Outrunner Electric Motor" (PDF). Retrieved 2015-06-23.  ^ "YASA-400 Electric Motor Specification". Retrieved 2015-07-01.  ^ "Great Planes ElectriFly AMMO Inrunner Brushless Motors". Retrieved 2015-06-23.  ^ "HVH250 R3" (PDF). Retrieved 2016-01-19. [permanent dead link] ^ "EMRAX268". Retrieved 2015-06-22.  ^ a b "Platypus Power Micro Hydro Electric Generator - Specifications". Platypus Power. Retrieved 2010-01-15.  ^ " Atlas Copco
Atlas Copco
Air motor catalogue, page 52 - Product data at air pressure 6.3 bar (91 psi) - LZL 35 Unrestricted" (PDF). Atlas Copco. Retrieved 2011-09-21.  ^ " Atlas Copco
Atlas Copco
Tools - LZB 14 Technical data". Atlas Copco. Retrieved 2011-09-21.  ^ a b "Bosch Production Tools - Air Tools - Motors". Bosch. Retrieved 2010-01-15.  ^ " Atlas Copco
Atlas Copco
Tools - LZB 46 Technical data". Atlas Copco. Retrieved 2011-09-21.  ^ SAI. "GM Series - GM7 Hydraulic
Hydraulic
Motor" (PDF). SAI. Retrieved 2010-01-14.  ^ SAI. "GM03 Motor - Extremely Compact Unit" (PDF). SAI. Retrieved 2010-01-14.  ^ Parker Hannifin Corporation. "Denison GOLD CUP Product Catalog" (PDF). Parker Hannifin Corporation. Retrieved 2012-10-31.  ^ Denison Hydraulics. "TB Vane-Type Single Pump" (PDF). Parker Hannifin Corporation. Retrieved 2012-10-31.  ^ Bennett, G.L. (2006). "Space Nuclear Power" (PDF). Federation of American Scientists.  ^ a b Caillat, T. (August 2006). "Development of a New Generation of High- Temperature
Temperature
Thermoelectric Unicouples for Space Applications" (PDF). NASA, JPL
JPL
and Caltech.  ^ Peukert, W. (1897). "Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren". Elektrotechnische Zeitschrift. 20.  ^ "Product Datasheet - Energizer
Energizer
675 ZnAir" (PDF). Energizer
Energizer
Holdings. 2010-02-15. Retrieved 2010-09-20.  ^ "GE Durathon Batteries - NaMx Battery System for Telecom Applications" (PDF). Pennsylvania State University. 2010-09-17. Retrieved 2011-11-24.  ^ " Zinc
Zinc
Carbon Batteries" (PDF). Panasonic. August 2009. Retrieved February 5, 2010.  ^ Matsushita Battery Industrial Co., Ltd.;Matsushita Electric Industrial Co., Ltd. (June 25, 1998). "Specification for Zinc-Carbon Dry Battery R03(NB)" (PDF). Panasonic. CS1 maint: Multiple names: authors list (link) ^ EaglePicher Technologies, LLC (February 6, 2003). "Nickel Hydrogen (NiH2) Batteries - Single Pressure
Pressure
Vessel" (PDF). University of Padua. Retrieved February 5, 2010. [dead link] ^ Clayton Power (2010). "Lithium Ion Battery Packs". Clayton Power. Archived from the original on 2010-10-22. Retrieved 2010-10-05.  ^ Clayton Power (2010). "Complete Power Systems - 24VDC/230VAC". Clayton Power. Archived from the original on 2011-02-11. Retrieved 2010-10-05.  ^ "Product Datasheet - Energizer
Energizer
522 9V" (PDF). Energizer
Energizer
Holdings. Retrieved February 4, 2010.  ^ "Nickel Metal Hydride Batteries - Individual Data Sheet - HHR900D" (PDF). Panasonic. August 2005. Retrieved February 5, 2010.  ^ Yang, Shaohua & Harold Knickle (2002). "Design and analysis of aluminum/air battery system for electric vehicles". Journal of Power Sources. 112 (1): 162–173. Bibcode:2002JPS...112..162Y. doi:10.1016/S0378-7753(02)00370-1. ISSN 0378-7753.  ^ Zhang, Xin, Shao Hua Yang, and Harold Knickle (2004). "Novel operation and control of an electric vehicle aluminum/air battery system". Journal of Power Sources. 128 (2): 331–342. Bibcode:2004JPS...128..331Z. doi:10.1016/j.jpowsour.2003.09.058. ISSN 0378-7753. CS1 maint: Multiple names: authors list (link) ^ LG Chem. (2005-03-24). "E2 General Information" (PDF). Lucky Goldstar Chemical Ltd. p. 1. Retrieved 2010-10-01.  ^ LG Chem. (2009-01-12). "Press Release - LG Chem Battery Cells to Power Chevrolet
Chevrolet
Volt" (PDF). Lucky Goldstar Chemical Ltd., CompactPower division. p. 3. Archived from the original (PDF) on 2012-04-28. Retrieved 2010-10-01.  ^ JCI-SAFT (June 2010). "Rechargeable LiFePO4 lithium-ion battery Super-Phosphate VL 45E Fe Very High Energy cell" (PDF). SAFT Batteries. Archived from the original (PDF) on 2010-11-22. Retrieved 2010-10-01.  ^ "Product Datasheet - Energizer
Energizer
CH35 C" (PDF). Energizer
Energizer
Holdings. Retrieved February 4, 2010.  ^ "Microcell Technology AGM Deep Cycle Group 31 Battery" (PDF). FireFly Energy, Inc. 2009. Retrieved February 4, 2010. [dead link] ^ "Lithium Ion Batteries - Individual Data Sheet - CGA103450A" (PDF). Panasonic. January 2007. Archived from the original (PDF) on March 27, 2009. Retrieved February 4, 2010.  ^ "Mission Extended - Advanced Zinc-Air Battery Technology" (PDF). Electric Fuel
Fuel
Battery Corporation. 2003-03-30. Retrieved 2010-09-15.  ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power. October 3, 2008. Retrieved 11 September 2010.  ^ Pasta, Mauro; Colin D. Wessells; Nian Liu; Johanna Nelson; Matthew T. McDowell; Robert A. Huggins; Michael F. Toney; Yi Cui (2014-01-06). "Full open-framework batteries for stationary energy storage". Nature Communications. 5: 3007. Bibcode:2014NatCo...5E3007P. doi:10.1038/ncomms4007. PMID 24389854. Retrieved 2014-08-01.  ^ Fukunaga, Hiroshi; Kishimi, Mitsuhiro; Matsumoto, Nobuaki; Tanaka, Toshiki; Kishimoto, Tomonori; Ozaki, Tetsuya; Sakai, Tetsuo (2006). "Improvement of Nickel Metal Hydride Battery with Non-foam Nickel Electrode for Hybrid Electric Vehicles Applications". Electrochemistry. Japan. 75 (5): 385–393. ISSN 1344-3542. Archived from the original on July 4, 2011. Retrieved February 4, 2010.  ^ "Rechargeable Battery SCiB - Description". Toshiba
Toshiba
Corporation. Archived from the original on 2010-08-27. Retrieved 2010-09-11.  ^ "Rechargeable Battery SCiB - Specifications". Toshiba
Toshiba
Corporation. Archived from the original on 2010-08-27. Retrieved 2010-09-11.  ^ "Lithium Ion Battery Research". Ionix Power Systems. Retrieved February 4, 2010.  ^ "A123Systems Products". A123 Systems. Archived from the original on September 24, 2009. Retrieved February 4, 2010.  ^ "High Power Lithium Ion ANR26650M1A - Datasheet" (PDF). A123 Systems. Archived from the original (PDF) on June 1, 2010. Retrieved February 4, 2010.  ^ JCI-Saft (June 2009). "Rechargeable lithium-ion battery VL 6A Very High Power cell" (PDF). SAFT Batteries. Archived from the original (PDF) on 2011-07-18. Retrieved 2010-10-02.  ^ "Typical Characteristics of Premlis". Advanced Capacitor Technologies, Inc. Retrieved September 9, 2010. [permanent dead link] ^ "Nesccap Ultracapacitor Products - EDLC - Prismatic" (PDF). Nesscap Co., Ltd. Retrieved September 10, 2010. [permanent dead link] ^ "Nesccap Ultracapacitor (EDLC)". Nesscap Co., Ltd. Archived from the original on February 6, 2010. Retrieved September 10, 2010.  ^ US patent 7466536, Weir; Richard Dean & Nelson; Carl Walter, "Utilization of poly(ethylene terephthalate) plastic and composition-modified barium titanate powders in a matrix that allows polarization and the use of integrated-circuit technologies for the production of lightweight ultrahigh electrical energy storage units (EESU)", published 16 December 2008, issued 16 December 2008, assigned to EEStor, Inc  ^ "SERIES CMX - Self-Healing Energy Storage Capacitors". Archived from the original on 29 March 2013. Retrieved 12 August 2012.  ^ "Redflow Power+BOS ZB600 Stand Alone Power System" (PDF). Redflow. March 2010. Archived from the original (PDF) on August 2, 2010. Retrieved September 11, 2010.  ^ "BlueGen Modular Generator - Power + Heat" (PDF). Ceramic Fuel
Fuel
Cells Ltd. Retrieved February 4, 2010. [permanent dead link] ^ "The Jenny fuel cell by SFC". Smart Fuel
Fuel
Cell AG. Retrieved February 4, 2010.  ^ " UTC Power
UTC Power
- Model 400 PureCell System" (PDF). South Windsor, Connecticut, United States: UTC Power. 2008. Archived from the original (PDF) on August 24, 2009. Retrieved February 4, 2010.  ^ "GEFC 50V50A-VRB Vanadium Redox Battery Stack". GEFC. 2010. Retrieved February 5, 2010.  ^ "Transportation Fuel
Fuel
Cells - Technical Info" (PDF). Fuel
Fuel
Cells 2000. Archived from the original (PDF) on 2004-10-13. Retrieved 2010-07-24.  ^ "Space Orbiter". UTC Power. 2008. Archived from the original on September 5, 2009. Retrieved February 5, 2010.  ^ a b "PEM Fuel
Fuel
Cell Product Portfolio" (PDF). Ballard Power Systems. Archived from the original (PDF) on July 7, 2011. Retrieved February 4, 2010.  ^ "High Power Density Solid Oxide Fuel
Fuel
Cell" (PDF). NASA
NASA
Glenn Research Center. Archived from the original (PDF) on February 18, 2013. Retrieved June 24, 2015.  ^ "Press Information Honda
Honda
Fuel
Fuel
Cell Power FCX" (PDF). Honda. December 2004. Archived from the original (PDF) on December 1, 2008. Retrieved February 4, 2010.  ^ Murphy, O.J.; Cisar, A.; Clarke, E. (1998). "Low-cost light weight high power density PEM fuel cell stack". Proceedings of the Symposium on Batteries and Fuel
Fuel
Cells for Portable Applications and Electric Vehicles. INIST. pp. 3829–3840.  ^ "Thyssen-Solartec - The photovoltaic roof and façade system" (PDF). Thyssen Solartec. Archived from the original (PDF) on 2008-12-03. Retrieved 2010-02-13.  ^ "Suntech HiPerforma Module PLUTO220-Udm PLUTO215-Udm" (PDF). Suntech Power. Retrieved 2010-03-09. [permanent dead link] ^ "GlobalSolar Product Catalog - Power the Possibilities". Global Solar. Retrieved 2010-03-09.  ^ "A Heritage-Technology Rigid Substrate Solar Array for Traditional Applications" (PDF). Able Engineering Company, Inc. Retrieved 2010-02-13.  ^ Turner, Martin J. L. (28 January 2018). "Rocket and Spacecraft Propulsion: Principles, Practice And New Developments". Springer Science & Business Media – via Google Books.  ^ http://apl.aip.org/resource/1/applab/v95/i22/p223503_s1 ^ a b "What is VAM and How to Calculate it?". Cycling Fitness. 2009-07-24. Archived from the original on 2009-10-12. Retrieved 2010-06-25.  ^ "1886 Benz Patent Motorwagen". Los Angeles Times. Tribune Company. 2006-06-01.  ^ Karwatka, Dennis (ed.). "Robert Stephenson and 19th-Century Transportation Technology". Encyclopædia Britannica. Retrieved 2010-01-08.  ^ Cobb, Harold M. (June 2006). "The Burlington Zephyr Stainless Steel Train". Advanced Materials & Processes: 24–28. Retrieved 2010-01-12. [permanent dead link] ^ Minidor Diesel 3-seater (PDF), Force Motors, archived from the original (PDF) on October 10, 2008, retrieved 2010-01-08  ^ "Balaji Force Minidor Autorickshaw". Balaji Force. Retrieved 2010-01-08.  ^ Ally, Jamie; Pryor, Trevor (2007-04-25). "Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems". Journal of Power Sources. Research Institute for Sustainable Energy, Murdoch University, Perth, Western Australia, Australia: Elsevier. 170 (2): 401–411. Bibcode:2007JPS...170..401A. doi:10.1016/j.jpowsour.2007.04.036. ISSN 0378-7753.  ^ "Abrams Tank Fact File for the United States Army". US Army. Archived from the original on 2013-11-15. Retrieved 2011-02-19.  ^ Leno, Jay (March 2005). "A Tonka Toy comes to life--really big life". Popular Mechanics. Archived from the original on 2010-01-24.  ^ "TH!NK City - Specifications - Technical Data". TH!NK Global. Archived from the original on 2010-09-22. Retrieved 2010-09-13.  ^ " Bombardier Transportation
Bombardier Transportation
- Rail Vehicles - Intercity/Highspeed - JetTrain". June 2000. Retrieved 2010-07-24.  ^ "About i MiEV". Mitsubishi Motors. July 2008. Archived from the original on 2008-11-21. Retrieved 2010-06-03.  ^ " Holden FJ
Holden FJ
Technical Specifications". Unique Cars and Parts. Retrieved 2010-01-08.  ^ Quiroga, Tony (November 2005). "GMC TopKick C4500 by Monroe Truck Equipment - Specs; Hummer This". Car And Driver. Retrieved 2010-01-15.  ^ " Land Rover Defender
Land Rover Defender
4×4 110 2.4D Hard Top 5dr". What Car?. Retrieved 2010-01-08.  ^ a b " Toyota
Toyota
Prius 2010 Performance & Specifications". Toyota. Retrieved 2010-01-08.  ^ "Details of Bajaj Platina 100 cc". AutoIndia. Retrieved 2010-01-08. [dead link] ^ "2003 Subaru R2
Subaru R2
S Technical specifications". Car Folio. Retrieved 2010-01-08.  ^ " Ford Fiesta
Ford Fiesta
Hatchback 1.6 TDCi Econetic 5dr". What Car?. Retrieved 2010-01-08.  ^ " Volvo C30
Volvo C30
- a Four-Seat Sports Coupé
Coupé
with High Performance". Volvo. Retrieved 2010-03-16.  ^ " Ford Focus
Ford Focus
Hatchback 1.6 TDCi 110 DPF ECOnetic 5dr". What Car?. Retrieved 2010-01-08.  ^ " Ford Focus
Ford Focus
Hatchback 1.8 TDCi Zetec S 5dr". What Car?. Retrieved 2010-01-08.  ^ "The History of the Honda
Honda
FCX Clarity, Fuel
Fuel
Cell Electric Vehicle FCEV". Honda. Archived from the original on 2011-05-20. Retrieved 2010-01-08.  ^ "2006 HUMMER H1 specifications". InternetAutoguide.com. Archived from the original on 2010-07-01. Retrieved 2010-01-08.  ^ "2003 Audi A2
Audi A2
1.4 TDi Technical specifications". Car Folio. Retrieved 2010-01-08.  ^ " Vauxhall
Vauxhall
Astra Hatchback 1.7 CDTi 125 Elite 5dr". What Car?. Retrieved 2010-07-09.  ^ " Mini
Mini
Cooper Hatchback 1.6D 3dr". What Car?. Retrieved 2010-01-08.  ^ " Ford Focus
Ford Focus
Hatchback 1.8 TDCi Style 5dr". What Car?. Retrieved 2010-01-08.  ^ "1998 GM EV1 GenII Lead-Acid 2 door fixed-head coupe technical specifications". Car Folio. Retrieved 2012-08-09.  ^ a b c d " Toyota
Toyota
Venza Performance & Specs". Toyota
Toyota
Motor North America. 2010. Retrieved 2010-11-06.  ^ " Ford Focus
Ford Focus
Hatchback 2.0 Zetec S 5dr". What Car?. Retrieved 2010-01-08.  ^ " Fiat Grande Punto
Fiat Grande Punto
Hatchback 1.6 Multijet 120 Sporting 5dr". What Car?. Retrieved 2010-01-08.  ^ " Vauxhall
Vauxhall
Astra Hatchback 2.0 CDTi 160 Elite 5dr". What Car?. Retrieved 2010-07-09.  ^ "2007 Ford Focus
Ford Focus
2.0 Automatic (US) Technical specifications". Retrieved 2010-01-08.  ^ "2005 Subaru Legacy
Subaru Legacy
2.0R Technical specifications". Retrieved 2010-01-08.  ^ "2008 Subaru Legacy
Subaru Legacy
Outback 2.5i Technical specifications". Retrieved 2010-01-08.  ^ " Smart Fortwo
Smart Fortwo
Cabriolet 1.0 97 Brabus Xclusive (07-09) 2dr". What Car?. Retrieved 2010-01-08.  ^ "An Assessment of Mass
Mass
Reduction Opportunities for a 2017–2020 Model Year Vehicle
Vehicle
Program" (PDF). International Council on Clean Transportation. Archived from the original (PDF) on 2011-11-04.  ^ " Toyota
Toyota
HiLux 4×2 Utes 2009" (PDF). Toyota. Retrieved 2010-01-21.  ^ " Mini
Mini
Cooper Hatchback 1.6T S John Cooper Works 3dr". What Car?. Retrieved 2010-01-08.  ^ "2007 Holden
Holden
WM Caprice". Topspeed. Retrieved 2010-01-08.  ^ M1030M1 JP8/Diesel Military Motorcycle
Motorcycle
(PDF), Hayes Diversified Technologies, archived from the original (PDF) on 2006-12-07, retrieved 2009-02-28  ^ "2009 Harley-Davidson FLSTF Softail Fat Boy Preview". Topspeed. Retrieved 2010-01-26.  ^ "The new BMW
BMW
760i; The new BMW
BMW
760Li; Contents" (PDF) (Press release). BMW. March 2009. Archived from the original (PDF) on 2011-07-08. Retrieved 2010-01-08.  ^ Edmunds, Dan. "Full Test: 2008 Subaru Impreza WRX STI". edmunds InsideLine. Archived from the original on 2009-02-28. Retrieved 2010-01-08.  ^ " Vauxhall
Vauxhall
VXR8 Saloon 6.2 V8 Bathurst 4dr". What Car?. Retrieved 2010-01-08.  ^ "Roadster Features and Specifications". Tesla Motors, Inc.. Archived from the original on 2013-02-12. Retrieved 2011-07-31.  ^ "Citroën DS3 RRC: A new addition to the family!". Retrieved 24 October 2012.  ^ Vijayenthiran, Viknesh. " Artega GT
Artega GT
now on sale". Motor Authority. Retrieved 2010-01-08.  ^ "2006 Lotus Exige
Lotus Exige
GT3 Technical specifications". Car Folio. Retrieved 2010-01-08.  ^ a b "2008 Chevrolet
Chevrolet
Corvette". MSN Autos. Retrieved 2010-01-08.  ^ a b "Is Nissan GTR Beating Hellcat Charger a Big Deal?". Allpar. Retrieved 2015-09-24.  ^ "gt-r versions-specs". Nissan. Retrieved 2015-09-24.  ^ " Tesla Model S
Tesla Model S
P85D: Dual motors, AWD, 691 hp, 3.2 to 60". RoadAndTrack. Retrieved 2017-02-05.  ^ "Press Release - Lamborghini Murciélago
Lamborghini Murciélago
LP 670-4 SuperVeloce – the new king of the bulls - is even more powerful, lighter and faster" (PDF). MotorStars. Retrieved 2010-03-24.  ^ mercedes-benz.com. "The New 2012 Mercedes-Benz
Mercedes-Benz
C- Coupé
Coupé
DTM". mercedes-benz.com. Archived from the original on 13 December 2011. Retrieved 9 September 2011.  ^ "Sector111 Project Dragon (Drakan Spyder)". sector111. Retrieved 2014-11-20.  ^ "1997 McLaren F1
McLaren F1
GT Technical specifications". Car Folio. Retrieved 2010-01-08.  ^ " BAC Mono
BAC Mono
review". Autocar. Retrieved 19 May 2014.  ^ " Porsche 918
Porsche 918
Spyder". car and driver. 2015. Retrieved 2016-09-24.  ^ Mastrostefano, Raffaele, ed. (January 1985). "Sempre Più Integrali" [More and More All-Wheel Drives]. Quattroruote (in Italian). Milan, Italy: Editoriale Domus. 30 (351): 182–183.  ^ "2014 Ariel Atom
Ariel Atom
3S". sector111. Retrieved 2014-11-20.  ^ " Bombardier Dash 8
Bombardier Dash 8
Q400 Specifications". Bombardier Aerospace. 1997. Archived from the original on 2010-02-11. Retrieved 2010-07-24.  ^ "Ferrari LaFerrari". car and driver. 2015. Retrieved 2016-09-24.  ^ Steve Sutcliffe (7 May 2014). " McLaren P1
McLaren P1
Review". Autocar. Retrieved 7 May 2014.  ^ "2009 Polaris 800 Assault RMK146 Snowmobile Specifications & Price". Polaris Industries. Retrieved 2010-01-19.  ^ Michael J. Fuller. "2006 Audi R10". Mulsanne's Corner.  ^ " Ultima GTR
Ultima GTR
720 (2006 - date)". SupercarWorld. Retrieved 2010-01-08.  ^ Lis, Alan. "The One That Got Away". Racecar Engineering. Chelsea Magazines.  ^ "The MTT Turbine Superbike" (PDF). Marine Turbine. Archived from the original (PDF) on 2009-04-07. Retrieved 2010-01-08.  ^ "2010 Vyrus
Vyrus
987 Review". Motorcycle.com. Retrieved 2010-04-14.  ^ "Kawasaki H2R". F1 Technical. Retrieved 2015-02-03.  ^ "Williams FW27". F1 Technical. Retrieved 2010-01-12.  ^ "John Force - Funny Car
Funny Car
Legend". Automobile Magazine. Archived from the original on 2011-07-07. Retrieved 2010-09-10.  ^ "Power Profiling - TrainingPeaks". 10 October 2008.