Parouse.com
 Parouse.com



Mir
Mir
(Russian: Мир, IPA: [ˈmʲir]; lit. peace or world) was a space station that operated in low Earth orbit from 1986 to 2001, operated by the Soviet Union
Soviet Union
and later by Russia. Mir
Mir
was the first modular space station and was assembled in orbit from 1986 to 1996. It had a greater mass than any previous spacecraft. At the time it was the largest artificial satellite in orbit, succeeded by the International Space Station
International Space Station
after Mir's orbit decayed. The station served as a microgravity research laboratory in which crews conducted experiments in biology, human biology, physics, astronomy, meteorology and spacecraft systems with a goal of developing technologies required for permanent occupation of space. Mir
Mir
was the first continuously inhabited long-term research station in orbit and held the record for the longest continuous human presence in space at 3,644 days, until it was surpassed by the ISS on 23 October 2010.[13] It holds the record for the longest single human spaceflight, with Valeri Polyakov
Valeri Polyakov
spending 437 days and 18 hours on the station between 1994 and 1995. Mir
Mir
was occupied for a total of twelve and a half years out of its fifteen-year lifespan, having the capacity to support a resident crew of three, or larger crews for short visits. Following the success of the Salyut programme, Mir
Mir
represented the next stage in the Soviet Union's space station programme. The first module of the station, known as the core module or base block, was launched in 1986 and followed by six further modules. Proton rockets were used to launch all of its components except for the docking module, which was installed by a US Space Shuttle
Space Shuttle
mission STS-74
STS-74
in 1995. When complete, the station consisted of seven pressurised modules and several unpressurised components. Power was provided by several photovoltaic arrays attached directly to the modules. The station was maintained at an orbit between 296 km (184 mi) and 421 km (262 mi) altitude and travelled at an average speed of 27,700 km/h (17,200 mph), completing 15.7 orbits per day.[6][7][8] The station was launched as part of the Soviet Union's manned spaceflight programme effort to maintain a long-term research outpost in space, and following the collapse of the USSR, was operated by the new Russian Federal Space Agency
Russian Federal Space Agency
(RKA). As a result, most of the station's occupants were Soviet; through international collaborations such as the Intercosmos, Euromir and Shuttle– Mir
Mir
programmes, the station was made accessible to space travelers from several Asian, European and North American nations. Mir
Mir
was deorbited in March 2001 after funding was cut off. The cost of the Mir
Mir
programme was estimated by former RKA General Director Yuri Koptev
Yuri Koptev
in 2001 as $4.2 billion over its lifetime (including development, assembly and orbital operation).[14]

Contents

1 Origins 2 Station structure

2.1 Assembly 2.2 Pressurised modules 2.3 Unpressurised elements 2.4 Power supply 2.5 Orbit control 2.6 Communications 2.7 Microgravity 2.8 Life support

3 International cooperation

3.1 Intercosmos 3.2 European involvement 3.3 Shuttle– Mir
Mir
program 3.4 Other visitors

4 Life on board

4.1 Crew schedule 4.2 Exercise 4.3 Hygiene 4.4 Sleeping in space 4.5 Food and drink 4.6 Microbiological environmental hazards

5 Station operations

5.1 Expeditions

5.1.1 Early existence 5.1.2 Third start 5.1.3 Post-Soviet period 5.1.4 Shuttle–Mir 5.1.5 Final days and deorbit

5.2 Visiting spacecraft 5.3 Mission control centre 5.4 Unused equipment 5.5 Safety aspects

5.5.1 Aging systems and atmosphere 5.5.2 Accidents 5.5.3 Radiation
Radiation
and orbital debris

6 In media 7 References 8 External links

Origins[edit] Mir
Mir
was authorized on a 17 February 1976 decree, to design an improved model of the Salyut DOS-17K space stations. Four Salyut space stations had been launched since 1971, with three more being launched during Mir's development. It was planned that the station's core module (DOS-7 and the backup DOS-8) would be equipped with a total of four docking ports; two at either end of the station as with the Salyut stations, and an additional two ports on either side of a docking sphere at the front of the station to enable further modules to expand the station's capabilities. By August 1978, this had evolved to the final configuration of one aft port and five ports in a spherical compartment at the forward end of the station.[15] It was originally planned that the ports would connect to 7.5-tonne (8.3-short-ton) modules derived from the Soyuz spacecraft. These modules would have used a Soyuz propulsion module, as in Soyuz and Progress, and the descent and orbital modules would have been replaced with a long laboratory module.[15] Following a February 1979 governmental resolution, the programme was consolidated with Vladimir Chelomei's manned Almaz
Almaz
military space station programme. The docking ports were reinforced to accommodate 20-tonne (22-short-ton) space station modules based on the TKS spacecraft. NPO Energia
Energia
was responsible for the overall space station, with work subcontracted to KB Salyut, due to ongoing work on the Energia
Energia
rocket and Salyut 7, Soyuz-T, and Progress spacecraft. KB Salyut began work in 1979, and drawings were released in 1982 and 1983. New systems incorporated into the station included the Salyut 5B digital flight control computer and gyrodyne flywheels (taken from Almaz), Kurs automatic rendezvous system, Luch satellite communications system, Elektron oxygen generators, and Vozdukh
Vozdukh
carbon dioxide scrubbers.[15] By early 1984, work on Mir
Mir
had halted while all resources were being put into the Buran programme
Buran programme
in order to prepare the Buran spacecraft for flight testing. Funding resumed in early 1984 when Valentin Glushko was ordered by the Central Committee's Secretary for Space and Defence to orbit Mir
Mir
by early 1986, in time for the 27th Communist Party Congress.[15] It was clear that the planned processing flow could not be followed and still meet the 1986 launch date. It was decided on Cosmonaut's Day (12 April) 1985 to ship the flight model of the base block to the Baikonur cosmodrome
Baikonur cosmodrome
and conduct the systems testing and integration there. The module arrived at the launch site on 6 May, with 1100 of 2500 cables requiring rework based on the results of tests to the ground test model at Khrunichev. In October, the base block was rolled outside its cleanroom to carry out communications tests. The first launch attempt on 16 February 1986 was scrubbed when the spacecraft communications failed, but the second launch attempt, on 19 February 1986 at 21:28:23 UTC, was successful, meeting the political deadline.[15] Station structure[edit] Assembly[edit]

A diagram showing the Konus drogue and module movements around Mir's docking node[16]

The orbital assembly of Mir
Mir
began on February 19, 1986 with the launch of the Proton-K
Proton-K
rocket. Four of the six modules which were later added ( Kvant-2
Kvant-2
in 1989, Kristall
Kristall
in 1990, Spektr
Spektr
in 1995 and Priroda
Priroda
in 1996) followed the same sequence to be added to the main Mir
Mir
complex. Firstly, the module would be launched independently on its own Proton-K
Proton-K
and chase the station automatically. It would then dock to the forward docking port on the core module's docking node, then extend its Lyappa arm
Lyappa arm
to mate with a fixture on the node's exterior. The arm would then lift the module away from the forward docking port and rotate it on to the radial port where it was to mate, before lowering it to dock. The node was equipped with only two Konus drogues, which were required for dockings. This meant that, prior to the arrival of each new module, the node would have to be depressurised to allow spacewalking cosmonauts to manually relocate the drogue to the next port to be occupied.[6][17] The other two expansion modules, Kvant-1
Kvant-1
in 1987 and the docking module in 1995, followed different procedures. Kvant-1, having, unlike the four modules mentioned above, no engines of its own, was launched attached to a tug based on the TKS spacecraft
TKS spacecraft
which delivered the module to the aft end of the core module instead of the docking node. Once hard docking had been achieved, the tug undocked and deorbited itself. The docking module, meanwhile, was launched aboard Space Shuttle Atlantis during STS-74
STS-74
and mated to the orbiter's Orbiter Docking System. Atlantis then docked, via the module, to Kristall, then left the module behind when it undocked later in the mission.[17][18] Various other external components, including three truss structures, several experiments and other unpressurised elements were also mounted to the exterior of the station by cosmonauts conducting a total of eighty spacewalks over the course of the station's history.[17] The station's assembly marked the beginning of the third generation of space station design, being the first to consist of more than one primary spacecraft (thus opening a new era in space architecture). First generation stations such as Salyut 1
Salyut 1
and Skylab
Skylab
had monolithic designs, consisting of one module with no resupply capability; the second generation stations Salyut 6
Salyut 6
and Salyut 7
Salyut 7
comprised a monolithic station with two ports to allow consumables to be replenished by cargo spacecraft such as Progress. The capability of Mir
Mir
to be expanded with add-on modules meant that each could be designed with a specific purpose in mind (for instance, the core module functioned largely as living quarters), thus eliminating the need to install all the station's equipment in one module.[17] Pressurised modules[edit] In its completed configuration, the space station consisted of seven different modules, each launched into orbit separately over a period of ten years by either Proton-K
Proton-K
rockets or Space Shuttle
Space Shuttle
Atlantis.

Module Expedition Launch date Launch system Nation Isolated view Station view

Mir
Mir
Core Module (Core Module) N/A 19 February 1986 Proton-K Soviet Union

The base block for the entire Mir
Mir
complex, the core module, or DOS-7, provided the main living quarters for resident crews and contained environmental systems, early attitude control systems and the station's main engines. The module was based on hardware developed as part of the Salyut programme, and consisted of a stepped-cylinder main compartment and a spherical 'node' module, which served as an airlock and provided ports to which four of the station's expansion modules were berthed and to which a Soyuz or Progress spacecraft
Progress spacecraft
could dock. The module's aft port served as the berthing location for Kvant-1.[19]

Kvant-1 (Astrophysics Module) EO-2 31 March 1987 Proton-K Soviet Union

The first expansion module to be launched, Kvant-1
Kvant-1
consisted of two pressurised working compartments and one unpressurised experiment compartment. Scientific equipment included an X-ray telescope, an ultraviolet telescope, a wide-angle camera, high-energy X-ray experiments, an X-ray/gamma ray detector, and the Svetlana electrophoresis unit. The module also carried six gyrodynes for attitude control, in addition to life support systems including an Elektron oxygen generator and a Vozdukh
Vozdukh
carbon dioxide scrubber.[19]

Kvant-2 (Augmentation Module) EO-5 26 November 1989 Proton-K Soviet Union

The first TKS based module, Kvant-2, was divided into three compartments: an EVA airlock, an instrument/cargo compartment (which could function as a backup airlock), and an instrument/experiment compartment. The module also carried a Soviet version of the Manned Maneuvering Unit for the Orlan space suit, referred to as Ikar, a system for regenerating water from urine, a shower, the Rodnik water storage system and six gyrodynes to augment those already located in Kvant-1. Scientific equipment included a high-resolution camera, spectrometers, X-ray sensors, the Volna 2 fluid flow experiment, and the Inkubator-2 unit, which was used for hatching and raising quail.[19]

Kristall (Technology Module) EO-6 31 May 1990 Proton-K Soviet Union

Kristall, the fourth module, consisted of two main sections. The first was largely used for materials processing (via various processing furnaces), astronomical observations, and a biotechnology experiment utilising the Aniur electrophoresis unit. The second section was a docking compartment which featured two APAS-89
APAS-89
docking ports initially intended for use with the Buran programme
Buran programme
and eventually used during the Shuttle- Mir
Mir
programme. The docking compartment also contained the Priroda
Priroda
5 camera used for Earth resources experiments. Kristall
Kristall
also carried six gyrodines for attitude control to augment those already on the station, and two collapsible solar arrays.[19]

Spektr (Power Module) EO-18 20 May 1995 Proton-K Russia

Spektr
Spektr
was the first of the three modules launched during the Shuttle- Mir
Mir
programme; it served as the living quarters for American astronauts and housed NASA-sponsored experiments. The module was designed for remote observation of Earth's environment and contained atmospheric and surface research equipment. It featured four solar arrays which generated approximately half of the station's electrical power. The module also had a science airlock to expose experiments to the vacuum of space selectively. Spektr
Spektr
was rendered unusable following the collision with Progress M-34 in 1997 which damaged the module, exposing it to the vacuum of space.[17]

Docking Module EO-20 15 November 1995 Space Shuttle
Space Shuttle
Atlantis (STS-74) US

The docking module was designed to help simplify Space Shuttle dockings to Mir. Before the first shuttle docking mission (STS-71), the Kristall
Kristall
module had to be tediously moved to ensure sufficient clearance between Atlantis and Mir's solar arrays. With the addition of the docking module, enough clearance was provided without the need to relocate Kristall. It had two identical APAS-89
APAS-89
docking ports, one attached to the distal port of Kristall
Kristall
with the other available for shuttle docking.[17]

Priroda (Earth Sensing Module) EO-21 26 April 1996 Proton-K Russia

The seventh and final Mir
Mir
module, Priroda's primary purpose was to conduct Earth resource experiments through remote sensing and to develop and verify remote sensing methods. The module's experiments were provided by twelve different nations, and covered microwave, visible, near infrared, and infrared spectral regions using both passive and active sounding methods. The module possessed both pressurised and unpressurised segments, and featured a large, externally mounted synthetic aperture radar dish.[17]

Unpressurised elements[edit]

The Travers radar antenna, Sofora girder, VDU thruster block, SPK unit and a Strela crane, alongside Kvant-2
Kvant-2
and Priroda

In addition to the pressurised modules, Mir
Mir
featured several external components. The largest component was the Sofora girder, a large scaffolding-like structure consisting of 20 segments which, when assembled, projected 14 metres from its mount on Kvant-1. A self-contained thruster block, the VDU, was mounted on the end of Sofora and was used to augment the roll-control thrusters on the core module. The VDU's increased distance from Mir's axis allowed an 85% decrease in fuel consumption, reducing the amount of propellant required to orient the station.[17] A second girder, Rapana, was mounted aft of Sofora on Kvant-1. This girder, a small prototype of a structure intended to be used on Mir-2
Mir-2
to hold large parabolic dishes away from the main station structure, was 5 metres long and used as a mounting point for externally mounted exposure experiments.[17] To assist in moving objects around the exterior of the station during EVAs, Mir
Mir
featured two Strela cargo cranes mounted to the sides of the core module, used for moving spacewalking cosmonauts and parts. The cranes consisted of telescopic poles assembled in sections which measured around 1.8 metres (6 ft) when collapsed, but when extended using a hand crank were 14 metres (46 ft) long, meaning that all of the station's modules could easily be accessed during spacewalks.[20] Each module was fitted with external components specific to the experiments that were carried out within that module, the most obvious being the Travers antenna mounted to Priroda. This synthetic aperture radar consisted of a large dish-like framework mounted outside the module, with associated equipment within, used for Earth observations experiments, as was most of the other equipment on Priroda, including various radiometers and scan platforms.[19] Kvant-2
Kvant-2
also featured several scan platforms and was fitted with a mounting bracket to which the cosmonaut manoeuvring unit, or Ikar, was mated. This backpack was designed to assist cosmonauts in moving around the station and the planned Buran in a manner similar to the US Manned Maneuvering Unit, but it was only used once, during EO-5.[17] In addition to module-specific equipment, Kvant-2, Kristall, Spektr and Priroda
Priroda
were each equipped with one Lyappa arm, a robotic arm which, after the module had docked to the core module's forward port, grappled one of two fixtures positioned on the core module's docking node. The arriving module's docking probe was then retracted, and the arm raised the module so that it could be pivoted 90° for docking to one of the four radial docking ports.[19] Power supply[edit]

The four solar arrays on Spektr

Photovoltaic (PV) arrays powered Mir. The station used a 28 volt DC supply which provided 5-, 10-, 20- and 50-amp taps. When the station was illuminated by sunlight, several solar arrays mounted on the pressurised modules provided power to Mir's systems and charged the nickel-cadmium storage batteries installed throughout the station.[17] The arrays rotated in only one degree of freedom over a 180° arc, and tracked the sun using sun sensors and motors installed in the array mounts. The station itself also had to be oriented to ensure optimum illumination of the arrays. When the station's all-sky sensor detected that Mir
Mir
had entered Earth's shadow, the arrays were rotated to the optimum angle predicted for reacquiring the sun once the station passed out of the shadow. The batteries, each of 60 Ah capacity, were then used to power the station until the arrays recovered their maximum output on the day side of Earth.[17] The solar arrays themselves were launched and installed over a period of eleven years, more slowly than originally planned, with the station continually suffering from a shortage of power as a result. The first two arrays, each 38 m2 (409 ft2) in area, were launched on the core module, and together provided a total of 9 kW of power. A third, dorsal panel was launched on Kvant-1
Kvant-1
and mounted on the core module in 1987, providing a further 2 kW from a 22 m2 (237 ft2) area.[17] Kvant-2, launched in 1989, provided two 10 m (32.8 ft) long panels which supplied 3.5 kW each, whilst Kristall
Kristall
was launched with two collapsible, 15 m (49.2 ft) long arrays (providing 4 kW each) which were intended to be moved to Kvant-1
Kvant-1
and installed on mounts which were attached during a spacewalk by the EO-8 crew in 1991.[17][19] This relocation was begun in 1995, when the panels were retracted and the left panel installed on Kvant-1. By this time all the arrays had degraded and were supplying much less power. To rectify this, Spektr (launched in 1995), which had initially been designed to carry two arrays, was modified to hold four, providing a total of 126 m2 (1360 ft2) of array with a 16 kW supply.[17] Two further arrays were flown to the station on board the Space Shuttle
Space Shuttle
Atlantis during STS-74, carried on the docking module. The first of these, the Mir
Mir
cooperative solar array, consisted of American photovoltaic cells mounted on a Russian frame. It was installed on the unoccupied mount on Kvant-1
Kvant-1
in May 1996 and was connected to the socket that had previously been occupied by the core module's dorsal panel, which was by this point barely supplying 1 kW.[17] The other panel, originally intended to be launched on Priroda, replaced the Kristall panel on Kvant-1
Kvant-1
in November 1997, completing the station's electrical system.[17] Orbit control[edit]

Graph showing the changing altitude of Mir
Mir
from 19 February 1986 until 21 March 2001

Mir
Mir
was maintained in a near circular orbit with an average perigee of 354 km (220 mi) and an average apogee of 374 km (232 mi), travelling at an average speed of 27,700 km/h (17,200 mph) and completing 15.7 orbits per day.[6][7][8] As the station constantly lost altitude because of a slight atmospheric drag, it needed to be boosted to a higher altitude several times each year. This boost was generally performed by Progress resupply vessels, although during the Shuttle- Mir
Mir
programme the task was performed by US Space Shuttles, and, prior to the arrival of Kvant-1, the engines on the core module could also accomplish the task.[17] The attitude (orientation) of the station was independently determined by a set of externally mounted sun, star and horizon sensors.[citation needed] Attitude information was conveyed between updates by rate sensors.[citation needed] Attitude control
Attitude control
was maintained by a combination of two mechanisms; in order to hold a set attitude, a system of twelve control moment gyroscopes (CMGs, or "gyrodynes") rotating at 10,000 rpm kept the station oriented, six CMGs being located in each of the Kvant-1
Kvant-1
and Kvant-2
Kvant-2
modules.[19][21] When the attitude of the station needed to be changed, the gyrodynes were disengaged, thrusters (including those mounted directly to the modules, and the VDU thruster used for roll control mounted to the Sofora girder) were used to attain the new attitude and the CMGs were reengaged.[21] This was done fairly regularly depending on experimental needs; for instance, Earth or astronomical observations required that the instrument recording images be continuously aimed at the target, and so the station was oriented to make this possible.[17] Conversely, materials processing experiments required the minimisation of movement on board the station, and so Mir
Mir
would be oriented in a gravity gradient attitude for stability.[17] Prior to the arrival of the modules containing these gyrodynes, the station's attitude was controlled using thrusters located on the core module alone, and, in an emergency, the thrusters on docked Soyuz spacecraft
Soyuz spacecraft
could be used to maintain the station's orientation.[17][22] Communications[edit] Radio
Radio
communications provided telemetry and scientific data links between Mir
Mir
and the RKA Mission Control Centre (TsUP). Radio
Radio
links were also used during rendezvous and docking procedures and for audio and video communication between crew members, flight controllers and family members. As a result, Mir
Mir
was equipped with several communication systems used for different purposes. The station communicated directly with the ground via the Lira antenna mounted to the core module. The Lira antenna also had the capability to use the Luch data relay satellite system (which fell into disrepair in the 1990s) and the network of Soviet tracking ships deployed in various locations around the world (which also became unavailable in the 1990s).[17] UHF radio was used by cosmonauts conducting EVAs. UHF was also employed by other spacecraft that docked to or undocked from the station, such as Soyuz, Progress, and the Space Shuttle, in order to receive commands from the TsUP
TsUP
and Mir
Mir
crew members via the TORU system.[17] Microgravity[edit]

Mir
Mir
in orbit

At Mir's orbital altitude, the force of Earth's gravity was 88% of sea level gravity. While the constant free fall of the station offered a perceived sensation of weightlessness, the onboard environment was not one of weightlessness or zero gravity. The environment was often described as microgravity. This state of perceived weightlessness was not perfect, being disturbed by five separate effects:[23]

The drag resulting from the residual atmosphere; Vibratory acceleration caused by mechanical systems and the crew on the station; Orbital corrections by the on-board gyroscopes (which spun at 10,000 rpm, producing vibrations of 166.67 Hz[21]) or thrusters; Tidal forces. Any parts of Mir
Mir
not at exactly the same distance from Earth tended to follow separate orbits. As each point was physically part of the station, this was impossible, and so each component was subject to small accelerations from tidal forces; The differences in orbital plane between different locations on the station.

Life support[edit] Mir's Environmental Control and Life Support System
Environmental Control and Life Support System
(ECLSS) provided or controlled atmospheric pressure, fire detection, oxygen levels, waste management and water supply. The highest priority for the ECLSS was the station's atmosphere, but the system also collected, processed, and stored waste and water produced and used by the crew—a process that recycles fluid from the sink, toilet, and condensation from the air. The Elektron system generated oxygen. Bottled oxygen and Solid Fuel Oxygen Generation (SFOG) canisters, a system known as Vika, provided backup. Carbon dioxide was removed from the air by the Vozdukh
Vozdukh
system.[17] Other byproducts of human metabolism, such as methane from the intestines and ammonia from sweat, were removed by activated charcoal filters. Similar systems are presently used on the International Space Station. The atmosphere on Mir
Mir
was similar to Earth's.[24] Normal air pressure on the station was 101.3 kPa (14.7 psi); the same as at sea level on Earth.[17] An Earth-like atmosphere offers benefits for crew comfort, and is much safer than the alternative, a pure oxygen atmosphere, because of increased fire risk such as occurred with Apollo 1.[25] See also: ISS ECLSS International cooperation[edit]

Reinhold Ewald
Reinhold Ewald
(right) and Vasily Tsibliyev
Vasily Tsibliyev
in the core module during Ewald's visit to Mir

Intercosmos[edit] Main article: Intercosmos Intercosmos
Intercosmos
("ИнтерКосмос" Interkosmos) was a Soviet Union space exploration programme which allowed members from the military forces of allied Warsaw Pact
Warsaw Pact
countries to participate in manned and unmanned space exploration missions. Participation was also made available to governments of countries, such as France
France
and India. Only the last three of the programme's fourteen missions consisted of an expedition to Mir
Mir
but none resulted in an extended stay in the station:

Muhammed Faris
Muhammed Faris
– EP-1 (1987)  Syria[26] Aleksandr Panayatov Aleksandrov
Aleksandr Panayatov Aleksandrov
– EP-2 (1988)  Bulgaria[27] Abdul Ahad Mohmand – EP-3 (1988)  Afghanistan[28]

European involvement[edit] Various European astronauts visited Mir
Mir
as part of several cooperative programmes:[29]

Jean-Loup Chrétien
Jean-Loup Chrétien
– Aragatz (1988)  France Helen Sharman
Helen Sharman
Project Juno
Project Juno
(1991)  UK Franz Viehböck – Austromir '91 (1991)  Austria Klaus-Dietrich Flade
Klaus-Dietrich Flade
Mir
Mir
'92 (1992)  Germany Michel Tognini
Michel Tognini
– Antarès (1992)  France Jean-Pierre Haigneré – Altair (1993)  France Ulf Merbold
Ulf Merbold
– Euromir '94 (1994)  Germany Thomas Reiter
Thomas Reiter
– Euromir '95 (1995)  Germany Claudie Haigneré
Claudie Haigneré
– Cassiopée (1996)  France Reinhold Ewald
Reinhold Ewald
Mir
Mir
'97 (1997)  Germany Léopold Eyharts
Léopold Eyharts
– Pégase (1998)  France Ivan Bella
Ivan Bella
– Stefanik (1999)  Slovakia

Shuttle– Mir
Mir
program[edit] Main article: Shuttle– Mir
Mir
Program

The seven NASA
NASA
astronauts who carried out long-duration missions on Mir

In the early 1980s, NASA
NASA
planned to launch a modular space station called Freedom as a counterpart to Mir, while the Soviets were planning to construct Mir-2
Mir-2
in the 1990s as a replacement for the station.[17] Because of budget and design constraints, Freedom never progressed past mock-ups and minor component tests and, with the fall of the Soviet Union
Soviet Union
and the end of the Space Race, the project was nearly cancelled entirely by the United States
United States
House of Representatives. The post-Soviet economic chaos in Russia
Russia
also led to the cancellation of Mir-2, though only after its base block, DOS-8, had been constructed.[17] Similar budgetary difficulties were faced by other nations with space station projects, which prompted the US government to negotiate with European states, Russia, Japan, and Canada
Canada
in the early 1990s to begin a collaborative project.[17] In June 1992, American president George H. W. Bush
George H. W. Bush
and Russian president Boris Yeltsin
Boris Yeltsin
agreed to cooperate on space exploration. The resulting Agreement between the United States
United States
of America and the Russian Federation Concerning Cooperation in the Exploration and Use of Outer Space for Peaceful Purposes called for a short joint space programme with one American astronaut deployed to the Russian space station Mir and two Russian cosmonauts deployed to a Space Shuttle.[17] In September 1993, US Vice President Al Gore, Jr., and Russian Prime Minister Viktor Chernomyrdin
Viktor Chernomyrdin
announced plans for a new space station, which eventually became the International Space Station.[30] They also agreed, in preparation of this new project, that the United States would be heavily involved in the Mir
Mir
programme as part of an international project known as the Shuttle– Mir
Mir
Programme.[31] The project, sometimes called "Phase One", was intended to allow the United States
United States
to learn from Russian experience in long-duration spaceflight and to foster a spirit of cooperation between the two nations and their space agencies, the US National Aeronautics and Space Administration (NASA) and the Russian Federal Space Agency (Roskosmos). The project prepared the way for further cooperative space ventures, specifically, "Phase Two" of the joint project, the construction of the International Space Station
International Space Station
(ISS). The programme was announced in 1993; the first mission started in 1994, and the project continued until its scheduled completion in 1998. Eleven Space Shuttle missions, a joint Soyuz flight, and almost 1000 cumulative days in space for US astronauts occurred over the course of seven long-duration expeditions. Other visitors[edit]

Toyohiro Akiyama
Toyohiro Akiyama
– Kosmoreporter (1990)  Japan[17] A British con artist, Peter Rodney Llewellyn, almost visited Mir
Mir
in 1999 on a private contract after promising US$100 million for the privilege.[32][33]

Life on board[edit]

Play media

A video tour of Mir
Mir
from September 1996, during STS-79

A view of the interior of the core module's docking node, showing the crowded nature of the station.

Inside, the 130-tonne (140-short-ton) Mir
Mir
resembled a cramped labyrinth, crowded with hoses, cables and scientific instruments—as well as articles of everyday life, such as photos, children's drawings, books and a guitar. It commonly housed three crew members, but was capable of supporting as many as six for up to a month. The station was designed to remain in orbit for around five years; it remained in orbit for fifteen.[34] As a result, NASA
NASA
astronaut John Blaha reported that, with the exception of Priroda
Priroda
and Spektr, which were added late in the station's life, Mir
Mir
did look used, which is to be expected given it had been lived in for ten to eleven years without being brought home and cleaned.[35] Crew schedule[edit] The time zone used on board Mir
Mir
was Moscow Time
Moscow Time
(UTC+03). The windows were covered during night hours to give the impression of darkness because the station experienced 16 sunrises and sunsets a day. A typical day for the crew began with a wake-up at 08:00, followed by two hours of personal hygiene and breakfast. Work was conducted from 10:00 until 13:00, followed by an hour of exercise and an hour's lunch break. Three more hours of work and another hour of exercise followed lunch, and the crews began preparing for their evening meal at about 19:00. The cosmonauts were free to do as they wished in the evening, and largely worked to their own pace during the day.[17] In their spare time, crews were able to catch up with work, observe the Earth below, respond to letters, drawings and other items brought from Earth (and give them an official stamp to show they had been aboard Mir), or make use of the station's ham radio.[17] Two amateur radio call signs, U1MIR and U2MIR, were assigned to Mir
Mir
in the late 1980s, allowing amateur radio operators on Earth to communicate with the cosmonauts.[36] The station was also equipped with a supply of books and films for the crew to read and watch.[22] NASA
NASA
astronaut Jerry Linenger
Jerry Linenger
related how life on board Mir
Mir
was structured and lived according to the detailed itineraries provided by ground control. Every second on board was accounted for and all activities were timetabled. After working some time on Mir, Linenger came to feel that the order in which his activities were allocated did not represent the most logical or efficient order possible for these activities. He decided to perform his tasks in an order that he felt enabled him to work more efficiently, be less fatigued, and suffer less from stress. Linenger noted that his comrades on Mir
Mir
did not "improvise" in this way, and as a medical doctor he observed the effects of stress on his comrades that he believed was the outcome of following an itinerary without making modifications to it. Despite this, he commented that his comrades performed all their tasks in a supremely professional manner.[37] Astronaut
Astronaut
Shannon Lucid, who set the record for longest stay in space by a woman while aboard Mir
Mir
(surpassed by Sunita Williams
Sunita Williams
11 years later on the ISS), also commented about working aboard Mir
Mir
saying "I think going to work on a daily basis on Mir
Mir
is very similar to going to work on a daily basis on an outstation in Antarctica. The big difference with going to work here is the isolation, because you really are isolated. You don't have a lot of support from the ground. You really are on your own."[35] Exercise[edit]

Shannon Lucid
Shannon Lucid
exercises on a treadmill during her stay aboard Mir.

The most significant adverse effects of long-term weightlessness are muscle atrophy and deterioration of the skeleton, or spaceflight osteopenia. Other significant effects include fluid redistribution, a slowing of the cardiovascular system, decreased production of red blood cells, balance disorders, and a weakening of the immune system. Lesser symptoms include loss of body mass, nasal congestion, sleep disturbance, excess flatulence, and puffiness of the face. These effects begin to reverse quickly upon return to the Earth.[38] To prevent some of these effects, the station was equipped with two treadmills (in the core module and Kvant-2) and a stationary bicycle (in the core module); each cosmonaut was to cycle the equivalent of 10 kilometres (6.2 mi) and run the equivalent of 5 kilometres (3.1 mi) per day.[17] Cosmonauts
Cosmonauts
used bungee cords to strap themselves to the treadmill. Researchers believe that exercise is a good countermeasure for the bone and muscle density loss that occurs in low-gravity situations.[39] Hygiene[edit]

One of the space toilets used aboard Mir

There were two space toilets (ASUs) on Mir, located in the core module and Kvant-2.[22] They used a fan-driven suction system similar to the Space Shuttle
Space Shuttle
Waste Collection System. The user is first fastened to the toilet seat, which was equipped with spring-loaded restraining bars to ensure a good seal. A lever operated a powerful fan and a suction hole slid open: the air stream carried the waste away. Solid waste was collected in individual bags which were stored in an aluminium container. Full containers were transferred to Progress spacecraft for disposal. Liquid waste was evacuated by a hose connected to the front of the toilet, with anatomically appropriate "urine funnel adapters" attached to the tube so both men and women could use the same toilet. Waste was collected and transferred to the Water Recovery System, where it was recycled back into drinking water, although this was usually used to produce oxygen via the Elektron system.[17] Mir
Mir
featured a shower, the Bania, located in Kvant-2. It was an improvement on the units installed in previous Salyut stations, but proved difficult to use due to the time required to set up, use, and stow. The shower, which featured a plastic curtain and fan to collect water via an airflow, was later converted into a steam room; it eventually had its plumbing removed and the space was reused. When the shower was unavailable, crew members washed using wet wipes, with soap dispensed from a toothpaste tube-like container, or using a washbasin equipped with a plastic hood, located in the core module. Crews were also provided with rinse-less shampoo and edible toothpaste to save water.[17] On a 1998 visit to Mir, bacteria and larger organisms were found to have proliferated in water globules formed from moisture that had condensed behind service panels.[40] Sleeping in space[edit] Main article: Sleep in space

Cosmonaut Yury Usachov
Yury Usachov
in his Kayutka

The station provided two permanent crew quarters, the Kayutkas, phonebox-sized booths set towards the rear of the core module, each featuring a tethered sleeping bag, a fold-out desk, a porthole, and storage for personal effects. Visiting crews had no allocated sleep module, instead attaching a sleeping bag to an available space on a wall; US astronauts installed themselves within Spektr
Spektr
until a collision with a Progress spacecraft
Progress spacecraft
caused the depressurisation of that module.[17] It was important that crew accommodations be well ventilated; otherwise, astronauts could wake up oxygen-deprived and gasping for air, because a bubble of their own exhaled carbon dioxide had formed around their heads.[41] Food and drink[edit] See also: Space food Most of the food eaten by station crews was frozen, refrigerated or canned. Menus were prepared by the cosmonauts, with the help of a dietitian, before their flight to the station. The diet was designed to provide around 100 g of protein, 130 g of fat and 330 g of carbohydrates per day, in addition to appropriate mineral and vitamin supplements. Meals were spaced out through the day to aid assimilation.[17] Canned food such as jellied beef tongue was placed into a niche in the core module's table, where it could be warmed in 5–10 minutes. Usually, crews drank tea, coffee and fruit juices, but, unlike the ISS, the station also had a supply of cognac and vodka for special occasions.[22] Microbiological environmental hazards[edit] In the 1990s samples of extremophile molds were taken from Mir. Ninety species of micro-organisms were found in 1990, four years after the station's launch. By the time of its decommission in 2001, the number of known different micro-organisms had grown to 140. As space stations get older, the problems with contamination get worse.[42] Moulds that develop aboard space stations can produce acids that degrade metal, glass and rubber.[43] The moulds in Mir
Mir
were found growing behind panels and inside air-conditioning equipment. The moulds also caused foul smell, which was often cited as visitors' strongest impressions.[44] Some biologists were concerned about the mutant fungi being a major microbiological hazard for humans, and reaching Earth in the splashdown, after having been in an isolated environment for 15 years.[44] Station operations[edit] Expeditions[edit] Main article: List of Mir
Mir
Expeditions See also: List of Mir
Mir
spacewalks Mir
Mir
was visited by a total of 28 long-duration or "principal" crews, each of which was given a sequential expedition number formatted as EO-X. Expeditions varied in length (from the 72-day flight of the crew of EO-28 to the 437-day flight of Valeri Polyakov), but generally lasted around six months.[17] Principal expedition crews consisted of two or three crew members, who often launched as part of one expedition but returned with another (Polyakov launched with EO-14 and landed with EO-17).[17] The principal expeditions were often supplemented with visiting crews who remained on the station during the week-long handover period between one crew and the next before returning with the departing crew, the station's life support system being able to support a crew of up to six for short periods.[17][45] The station was occupied for a total of four distinct periods; 12 March–16 July 1986 (EO-1), 5 February 1987 – 27 April 1989 (EO-2–EO-4), the record-breaking run from 5 September 1989 – 28 August 1999 (EO-5–EO-27), and 4 April–16 June 2000 (EO-28).[45] By the end, it had been visited by 104 different people from twelve different nations, making it the most visited spacecraft in history (a record later surpassed by the International Space Station).[17] Early existence[edit] See also: Mir Core Module
Mir Core Module
and Kvant-1

The core module with Kvant-1
Kvant-1
and Soyuz TM-3

Due to the pressure to launch the station on schedule, mission planners were left without Soyuz spacecraft
Soyuz spacecraft
or modules to launch to the station at first. It was decided to launch Soyuz T-15
Soyuz T-15
on a dual mission to both Mir
Mir
and Salyut 7.[15] Leonid Kizim and Vladimir Solovyov first docked with Mir
Mir
on 15 March 1986. During their nearly 51-day stay on Mir, they brought the station online and checked its systems. They unloaded two Progress spacecraft launched after their arrival, Progress 25 and Progress 26.[46] On 5 May 1986, they undocked from Mir
Mir
for a day-long journey to Salyut 7. They spent 51 days there and gathered 400 kg of scientific material from Salyut 7
Salyut 7
for return to Mir. While Soyuz T-15
Soyuz T-15
was at Salyut 7, the unmanned Soyuz TM-1
Soyuz TM-1
arrived at the unoccupied Mir
Mir
and remained for 9 days, testing the new Soyuz TM model. Soyuz T-15 redocked with Mir
Mir
on 26 June and delivered the experiments and 20 instruments, including a multichannel spectrometer. The EO-1 crew spent their last 20 days on Mir
Mir
conducting Earth observations before returning to Earth on 16 July 1986, leaving the new station unoccupied.[47] The second expedition to Mir, EO-2, launched on Soyuz TM-2 on 5 February 1987. During their stay, the Kvant-1
Kvant-1
module, launched on 30 March 1987, arrived. It was the first experimental version of a planned series of '37K' modules scheduled to be launched to Mir
Mir
on Buran. Kvant-1
Kvant-1
was originally planned to dock with Salyut 7; due to technical problems during its development, it was reassigned to Mir. The module carried the first set of six gyroscopes for attitude control. The module also carried instruments for X-ray and ultraviolet astrophysical observations.[19] The initial rendezvous of the Kvant-1
Kvant-1
module with Mir
Mir
on 5 April 1987 was troubled by the failure of the onboard control system. After the failure of the second attempt to dock, the resident cosmonauts, Yuri Romanenko and Aleksandr Laveykin, conducted an EVA to fix the problem. They found a trash bag which had been left in orbit after the departure of one of the previous cargo ships and was now located between the module and the station, which prevented the docking. After removing the bag, docking was completed on 12 April.[48][49] The Soyuz TM-2 launch was the beginning of a string of 6 Soyuz launches and three long-duration crews between 5 February 1987 and 27 April 1989. This period also saw the first international visitors, Muhammed Faris
Muhammed Faris
(Syria), Abdul Ahad Mohmand (Afghanistan) and Jean-Loup Chrétien (France). With the departure of EO-4 on Soyuz TM-7
Soyuz TM-7
on 27 April 1989 the station was again left unoccupied.[17] Third start[edit] See also: Kvant-2
Kvant-2
and Kristall The launch of Soyuz TM-8
Soyuz TM-8
on 5 September 1989 marked the beginning of the longest human presence in space, until 23 October 2010, when this record was surpassed by the ISS.[13] It also marked the beginning of Mir's second expansion. The Kvant-2
Kvant-2
and Kristall
Kristall
modules were now ready for launch. Alexander Viktorenko and Aleksandr Serebrov
Aleksandr Serebrov
docked with Mir
Mir
and brought the station out of its five-month hibernation. On 29 September the cosmonauts installed equipment in the docking system in preparation for the arrival of Kvant-2, the first of the 20 tonne add-on modules based on the TKS spacecraft
TKS spacecraft
from the Almaz
Almaz
programme.[50]

Mir
Mir
following the arrival of Kvant-2
Kvant-2
in 1989

After a 40-day delay caused by faulty computer chips, Kvant-2
Kvant-2
was launched on 26 November 1989. After problems deploying the craft's solar array and with the automated docking systems on both Kvant-2
Kvant-2
and Mir, the new module was docked manually on 6 December. Kvant-2
Kvant-2
added a second set of gyrodines to Mir, and brought the new life support systems for recycling water and generating oxygen, reducing dependence on ground resupply. The module featured a large airlock with a one-metre hatch. A special backpack unit (known as Ikar), an equivalent of the US Manned Maneuvering Unit, was located inside Kvant-2's airlock.[50][51] Soyuz TM-9
Soyuz TM-9
launched EO-6 crew members Anatoly Solovyev
Anatoly Solovyev
and Aleksandr Balandin on 11 February 1990. While docking, the EO-5 crew noted that three thermal blankets on the ferry were loose, potentially creating problems on reentry, but it was decided that they would be manageable. Their stay on board Mir
Mir
saw the addition of the Kristall
Kristall
module, launched 31 May 1990. The first docking attempt on 6 June was aborted due to an attitude control thruster failure. Kristall
Kristall
arrived at the front port on 10 June and was relocated to the lateral port opposite Kvant-2
Kvant-2
the next day, restoring the equilibrium of the complex. Due to the delay in the docking of Kristall, EO-6 was extended by 10 days to permit the activation of the module’s systems and to accommodate an EVA to repair the loose thermal blankets on Soyuz TM-9.[52] Kristall
Kristall
contained furnaces for use in producing crystals under microgravity conditions (hence the choice of name for the module). The module was also equipped with biotechnology research equipment, including a small greenhouse for plant cultivation experiments which was equipped with a source of light and a feeding system, in addition to equipment for astronomical observations. The most obvious features of the module were the two Androgynous Peripheral Attach System (APAS-89) docking ports designed to be compatible with the Buran spacecraft. Although they were never used in a Buran docking, they were useful later during the Shuttle- Mir
Mir
programme, providing a berthing location for US Space Shuttles.[53] The EO-7 relief crew arrived aboard Soyuz TM-10
Soyuz TM-10
on 3 August 1990. The new crew arrived at Mir
Mir
with quail for Kvant-2's cages, one of which laid an egg en route to the station. It was returned to Earth, along with 130 kg of experiment results and industrial products, in Soyuz TM-9.[52] Two more expeditions, EO-8 and EO-9, continued the work of their predecessors whilst tensions grew back on Earth. Post-Soviet period[edit]

A view of Mir
Mir
from Soyuz TM-17
Soyuz TM-17
on 3 July 1993 showing ongoing docking operations at the station

The EO-10 crew, launched aboard Soyuz TM-13
Soyuz TM-13
on 2 October 1991, was the last crew to launch from the USSR and continued the occupation of Mir through the fall of the Soviet Union. The crew is notable for having launched as Soviet citizens and returning to earth as Russians. The newly formed Russian Federal Space Agency
Russian Federal Space Agency
(Roskosmos) was unable to finance the unlaunched Spektr
Spektr
and Priroda
Priroda
modules, instead putting them into storage and ending Mir's second expansion.[54][55][56] The first manned mission flown from an independent Kazakhstan
Kazakhstan
was Soyuz TM-14, launched on 17 March 1992, which carried the EO-11 crew to Mir, docking on 19 March before the departure of Soyuz TM-13. On 17 June, Russian President Boris Yeltsin
Boris Yeltsin
and US President George H. W. Bush announced what would later become the Shuttle- Mir
Mir
programme, a cooperative venture which proved useful to the cash-strapped Roskosmos (and led to the eventual completion and launch of Spektr
Spektr
and Priroda). EO-12 followed in July, alongside a brief visit by French astronaut Michel Tognini.[45] The following crew, EO-13, began preparations for the Shuttle- Mir
Mir
programme by flying to the station in a modified spacecraft, Soyuz TM-16
Soyuz TM-16
(launched on 26 January 1993), which was equipped with an APAS-89
APAS-89
docking system rather than the usual probe-and-drogue, enabling it to dock to Kristall
Kristall
and test the port which would later be used by US space shuttles. The spacecraft also enabled controllers to obtain data on the dynamics of docking a spacecraft to a space station off the station's longitudinal axis, in addition to data on the structural integrity of this configuration via a test called Rezonans conducted on 28 January. Soyuz TM-15, meanwhile, departed with the EO-12 crew on 1 February.[45] Throughout the period following the collapse of the USSR, crews on Mir experienced occasional reminders of the economic chaos occurring in Russia. The initial cancellation of Spektr
Spektr
and Priroda
Priroda
was the first such sign, followed by the reduction in communications as a result of the fleet of tracking ships being withdrawn from service by Ukraine. The new Ukrainian government also vastly raised the price of the Kurs docking systems, manufactured in Kiev – the Russians' attempts to reduce their dependence on Kurs would later lead to accidents during TORU tests in 1997. Various Progress spacecraft
Progress spacecraft
had parts of their cargoes missing, either because the consumable in question had been unavailable, or because the ground crews at Baikonur
Baikonur
had, in desperation, looted them. The problems became particularly obvious during the launch of the EO-14 crew aboard Soyuz TM-17
Soyuz TM-17
in July; shortly before launch there was a black-out at the pad, and the entire power supply to the nearby city of Leninsk failed an hour after launch.[17][45] Nevertheless, the spacecraft launched on time and arrived at the station two days later. All of Mir's ports were occupied, and so Soyuz TM-17
Soyuz TM-17
had to station-keep 200 metres away from the station for half an hour before docking whilst Progress M-18 vacated the core module's front port and departed.[45] The EO-13 crew departed on 22 July, and soon after Mir
Mir
passed through the annual Perseid meteor shower, during which the station was hit by several particles. A spacewalk was conducted on 28 September to inspect the station's hull, but no serious damage was reported. Soyuz TM-18 arrived on 10 January 1994 carrying the EO-15 crew (including Valeri Polyakov, who was to remain on Mir
Mir
for 14 months), and Soyuz TM-17 left on 14 January. The undocking was unusual in that the spacecraft was to pass along Kristall
Kristall
in order to obtain photographs of the APAS to assist in the training of space shuttle pilots. Due to an error in setting up the control system, the spacecraft struck the station a glancing blow during the manoeuvre, scratching the exterior of Kristall.[45] On 3 February 1994, Mir
Mir
veteran Sergei Krikalev
Sergei Krikalev
became the first Russian cosmonaut to launch on a US spacecraft, flying on Space Shuttle Discovery during STS-60.[57] The launch of Soyuz TM-19, carrying the EO-16 crew, was delayed due to the unavailability of a payload fairing for the booster that was to carry it, but the spacecraft eventually left Earth on 1 July 1994 and docked two days later. They stayed only four months to allow the Soyuz schedule to line up with the planned space shuttle manifest, and so Polyakov greeted a second resident crew in October, prior to the undocking of Soyuz TM-19, when the EO-17 crew arrived in Soyuz TM-20.[45] Shuttle–Mir[edit] Main article: Shuttle– Mir
Mir
Program See also: Spektr, Priroda, and Mir
Mir
Docking Module

Space Shuttle
Space Shuttle
Atlantis docked to Mir
Mir
on STS-71.

The 3 February launch of Space Shuttle
Space Shuttle
Discovery, flying STS-63, opened operations on Mir
Mir
for 1995. Referred to as the "near-Mir" mission, the mission saw the first rendezvous of a space shuttle with Mir
Mir
as the orbiter approached within 37 feet (11 m) of the station as a dress rehearsal for later docking missions and for equipment testing.[58][59][60] Five weeks after Discovery's departure, the EO-18 crew, including the first US cosmonaut Norman Thagard, arrived in Soyuz TM-21. The EO-17 crew left a few days later, with Polyakov completing his record-breaking 437-day spaceflight. During EO-18, the Spektr
Spektr
science module (which served as living and working space for American astronauts) was launched aboard a Proton rocket
Proton rocket
and docked to the station, carrying research equipment from America and other nations. The expedition's crew returned to Earth aboard Space Shuttle Atlantis following the first Shuttle– Mir
Mir
docking mission, STS-71.[17][22] Atlantis, launched on 27 June 1995, successfully docked with Mir
Mir
on 29 June becoming the first US spacecraft to dock with a Russian spacecraft since the ASTP in 1975.[61] The orbiter delivered the EO-19 crew and returned the EO-18 crew to Earth.[58][62][63] The EO-20 crew were launched on 3 September, followed in November by the arrival of the docking module during STS-74.[18][58][64][65] The two-man EO-21 crew was launched on 21 February 1996 aboard Soyuz TM-23 and were soon joined by US crew member Shannon Lucid, who was brought to the station by Atlantis during STS-76. This mission saw the first joint US spacewalk on Mir
Mir
take place deploying the Mir Environmental Effects Payload package on the docking module.[66] Lucid became the first American to carry out a long-duration mission aboard Mir
Mir
with her 188-day mission, which set the US single spaceflight record. During Lucid's time aboard Mir, Priroda, the station's final module, arrived as did French visitor Claudie Haigneré
Claudie Haigneré
flying the Cassiopée mission. The flight aboard Soyuz TM-24
Soyuz TM-24
also delivered the EO-22 crew of Valery Korzun
Valery Korzun
and Aleksandr Kaleri.[17][58][67] Lucid's stay aboard Mir
Mir
ended with the flight of Atlantis on STS-79, which launched on 16 September. This, the fourth docking, saw John Blaha transferring onto Mir
Mir
to take his place as resident US astronaut. His stay on the station improved operations in several areas, including transfer procedures for a docked space shuttle, "hand-over" procedures for long-duration American crew members and "ham" amateur radio communications, and also saw two spacewalks to reconfigure the station's power grid. Blaha spent four months with the EO-22 crew before returning to Earth aboard Atlantis on STS-81
STS-81
in January 1997, at which point he was replaced by physician Jerry Linenger.[58][68][69] During his flight, Linenger became the first American to conduct a spacewalk from a foreign space station and the first to test the Russian-built Orlan-M spacesuit alongside Russian cosmonaut Vasili Tsibliyev, flying EO-23. All three crew members of EO-23 performed a "fly-around" in Soyuz TM-25
Soyuz TM-25
spacecraft.[17] Linenger and his Russian crewmates Vasili Tsibliyev
Vasili Tsibliyev
and Aleksandr Lazutkin faced several difficulties during the mission, including the most severe fire aboard an orbiting spacecraft (caused by a malfunctioning Vika), failures of various systems, a near collision with Progress M-33 during a long-distance TORU test and a total loss of station electrical power. The power failure also caused a loss of attitude control, which led to an uncontrolled "tumble" through space.[17][22][37][58]

Damaged solar arrays on Mir's Spektr
Spektr
module following a collision with Progress-M34 in September 1997

Linenger was succeeded by Anglo-American astronaut Michael Foale, carried up by Atlantis on STS-84, alongside Russian mission specialist Elena Kondakova. Foale's increment proceeded fairly normally until 25 June when during the second test of the Progress manual docking system, TORU, Progress M-34 collided with solar arrays on the Spektr module and crashed into the module's outer shell, puncturing the module and causing depressurisation on the station. Only quick actions on the part of the crew, cutting cables leading to the module and closing Spektr's hatch, prevented the crews having to abandon the station in Soyuz TM-25. Their efforts stabilised the station's air pressure, whilst the pressure in Spektr, containing many of Foale's experiments and personal effects, dropped to a vacuum.[22][58] In an effort to restore some of the power and systems lost following the isolation of Spektr
Spektr
and to attempt to locate the leak, EO-24 commander Anatoly Solovyev
Anatoly Solovyev
and flight engineer Pavel Vinogradov
Pavel Vinogradov
carried out a risky salvage operation later in the flight, entering the empty module during a so-called "intra-vehicular activity" or "IVA" spacewalk and inspecting the condition of hardware and running cables through a special hatch from Spektr's systems to the rest of the station. Following these first investigations, Foale and Solovyev conducted a 6-hour EVA outside Spektr
Spektr
to inspect the damage.[58][70] After these incidents, the US Congress and NASA
NASA
considered whether to abandon the programme out of concern for the astronauts' safety, but NASA
NASA
administrator Daniel Goldin
Daniel Goldin
decided to continue.[37] The next flight to Mir, STS-86, carried David Wolf aboard Atlantis. During the orbiter's stay, Titov and Parazynski conducted a spacewalk to affix a cap to the docking module for a future attempt by crew members to seal the leak in Spektr's hull.[58][71] Wolf spent 119 days aboard Mir
Mir
with the EO-24 crew and was replaced during STS-89
STS-89
with Andy Thomas, who carried out the last US expedition on Mir.[58][72] The EO-25 crew arrived in Soyuz TM-27
Soyuz TM-27
in January 1998 before Thomas returned to Earth on the final Shuttle– Mir
Mir
mission, STS-91.[58][73][74] Final days and deorbit[edit] Main article: Deorbit of Mir

Mir
Mir
breaks up in Earth's atmosphere over the South Pacific on 23 March 2001.

Following the 8 June 1998 departure of Discovery, the EO-25 crew of Budarin and Musabayev remained on Mir, completing materials experiments and compiling a station inventory. On 2 July, Roskosmos director Yuri Koptev
Yuri Koptev
announced that, due to a lack of funding to keep Mir
Mir
active, the station would be deorbited in June 1999.[17] The EO-26 crew of Gennady Padalka
Gennady Padalka
and Sergei Avdeyev
Sergei Avdeyev
arrived on 15 August in Soyuz TM-28, alongside physicist Yuri Baturin, who departed with the EO-25 crew on 25 August in Soyuz TM-27. The crew carried out two spacewalks, one inside Spektr
Spektr
to reseat some power cables and another outside to set up experiments delivered by Progress M-40, which also carried a large amount of propellant to begin alterations to Mir's orbit in preparation for the station's decommissioning. 20 November 1998 saw the launch of Zarya, the first module of the International Space Station, but delays to the new station's service module Zvezda had led to calls for Mir
Mir
to be kept in orbit past 1999. Roskosmos confirmed that it would not fund Mir
Mir
past the set deorbit date.[17] The crew of EO-27, Viktor Afanasyev and Jean-Pierre Haigneré, arrived in Soyuz TM-29
Soyuz TM-29
on 22 February 1999 alongside Ivan Bella, who returned to Earth with Padalka in Soyuz TM-28. The crew carried out three EVAs to retrieve experiments and deploy a prototype communications antenna on Sofora. On 1 June it was announced that the deorbit of the station would be delayed by six months to allow time to seek alternative funding to keep the station operating. The rest of the expedition was spent preparing the station for its deorbit; a special analog computer was installed and each of the modules, starting with the docking module, was mothballed in turn and sealed off. The crew loaded their results into Soyuz TM-29
Soyuz TM-29
and departed Mir
Mir
on 28 August 1999, ending a run of continuous occupation, which had lasted for eight days short of ten years.[17] The station's gyrodines and main computer were shut down on 7 September, leaving Progress M-42 to control Mir
Mir
and refine the station's orbital decay rate.[17] Near the end of its life, there were plans for private interests to purchase Mir, possibly for use as the first orbital television/movie studio. The privately funded Soyuz TM-30
Soyuz TM-30
mission by MirCorp, launched on 4 April 2000, carried two crew members, Sergei Zalyotin
Sergei Zalyotin
and Aleksandr Kaleri, to the station for two months to do repair work with the hope of proving that the station could be made safe. This was to be the last manned mission to Mir—while Russia
Russia
was optimistic about Mir's future, its commitments to the International Space Station project left no funding to support the aging station.[17][75] Mir's deorbit was carried out in three stages. The first stage involved waiting for atmospheric drag to reduce the station's orbit to an average of 220 kilometres (140 mi). This began with the docking of Progress M1-5, a modified version of the Progress-M carrying 2.5 times more fuel in place of supplies. The second stage was the transfer of the station into a 165 × 220 km (103 × 137 mi) orbit. This was achieved with two burns of Progress M1-5's control engines at 00:32 UTC
UTC
and 02:01 UTC
UTC
on 23 March 2001. After a two-orbit pause, the third and final stage of the deorbit began with the burn of Progress M1-5's control engines and main engine at 05:08 UTC, lasting 22+ minutes. Atmospheric reentry (arbitrarily defined beginning at 100 km/60 mi AMSL) occurred at 05:44 UTC
UTC
near Nadi, Fiji. Major destruction of the station began around 05:52 UTC
UTC
and most of the unburned fragments fell into the South Pacific Ocean
South Pacific Ocean
around 06:00 UTC.[76][77] Visiting spacecraft[edit] Main articles: Soyuz (spacecraft), Progress (spacecraft), and Space Shuttle See also: List of human spaceflights to Mir
List of human spaceflights to Mir
and List of unmanned spaceflights to Mir

Soyuz TM-24
Soyuz TM-24
docked with Mir
Mir
as seen from the Space Shuttle
Space Shuttle
Atlantis during STS-79

Mir
Mir
was primarily supported by the Russian Soyuz and Progress spacecraft and had two ports available for docking them. Initially, the fore and aft ports of the core module could be used for dockings, but following the permanent berthing of Kvant-1
Kvant-1
to the aft port in 1987, the rear port of the new module took on this role from the core module's aft port. Each port was equipped with the plumbing required for Progress cargo ferries to replace the station's fluids and also the guidance systems needed to guide the spacecraft for docking. Two such systems were used on Mir; the rear ports of both the core module and Kvant-1
Kvant-1
were equipped with both the Igla and Kurs systems, whilst the core module's forward port featured only the newer Kurs.[17] Soyuz spacecraft
Soyuz spacecraft
provided manned access to and from the station allowing for crew rotations and cargo return, and also functioned as a lifeboat for the station, allowing for a relatively quick return to Earth in the event of an emergency.[45][78] Two models of Soyuz flew to Mir; Soyuz T-15
Soyuz T-15
was the only Igla-equipped Soyuz-T
Soyuz-T
to visit the station, whilst all other flights used the newer, Kurs-equipped Soyuz-TM. A total of 31 (30 manned, 1 unmanned) Soyuz spacecraft
Soyuz spacecraft
flew to the station over a fourteen-year period.[45] The unmanned Progress cargo vehicles were only used to resupply the station, carrying a variety of cargoes including water, fuel, food and experimental equipment. The spacecraft were not equipped with reentry shielding and so, unlike their Soyuz counterparts, were incapable of surviving reentry.[79] As a result, when its cargo had been unloaded, each Progress was refilled with rubbish, spent equipment and other waste which was destroyed, along with the Progress itself, on reentry.[45] In order to facilitate cargo return, ten Progress flights carried Raduga capsules, which could return around 150 kg of experimental results to Earth automatically.[45] Mir
Mir
was visited by three separate models of Progress; the original 7K-TG variant equipped with Igla (18 flights), the Progress-M
Progress-M
model equipped with Kurs (43 flights), and the modified Progress-M1
Progress-M1
version (3 flights), which together flew a total of 64 resupply missions.[45] Whilst the Progress spacecraft usually docked automatically without incident, the station was equipped with a remote manual docking system, TORU, in case problems were encountered during the automatic approaches. With TORU cosmonauts could guide the spacecraft safely in to dock (with the exception of the catastrophic docking of Progress M-34, when the long-range use of the system resulted in the spacecraft's striking the station, damaging Spektr
Spektr
and causing decompression).[17] In addition to the routine Soyuz and Progress flights, it was anticipated that Mir
Mir
would also be the destination for flights by the Soviet Buran space shuttle, which was intended to deliver extra modules (based on the same "37K" bus as Kvant-1) and provide a much improved cargo return service to the station. Kristall
Kristall
carried two Androgynous Peripheral Attach System
Androgynous Peripheral Attach System
(APAS-89) docking ports designed to be compatible with the shuttle. One port was to be used for Buran; the other for the planned Pulsar X-2 telescope, also to be delivered by Buran.[17][53] The cancellation of the Buran programme
Buran programme
meant these capabilities were not realised until the 1990s when the ports were used instead by US Space Shuttles as part of the Shuttle- Mir
Mir
programme (after testing by the specially modified Soyuz TM-16
Soyuz TM-16
in 1993). Initially, visiting Space Shuttle
Space Shuttle
orbiters docked directly to Kristall, but this required the relocation of the module to ensure sufficient distance between the shuttle and Mir's solar arrays.[17] To eliminate the need to move the module and retract solar arrays for clearance issues, a Mir Docking Module
Mir Docking Module
was later added to the end of Kristall.[80] The shuttles provided crew rotation of the American astronauts on station and carried cargo to and from the station, performing some of the largest transfers of cargo of the time. With a space shuttle docked to Mir, the temporary enlargements of living and working areas amounted to a complex that was the largest spacecraft in history at that time, with a combined mass of 250 tonnes (280 short tons).[17] Mission control centre[edit] Main article: TsUP

TsUP
TsUP
(2007)

Mir
Mir
and its resupply missions were controlled from the Russian Mission control center (Russian: Центр управления полётами) in Korolyov, near the RKK Energia
Energia
plant. Referred to by its acronym ЦУП ("TsUP"), or simply as 'Moscow', the facility could process data from up to ten spacecraft in three separate control rooms, although each control room was dedicated to a single programme; one to Mir; one to Soyuz; and one to the Soviet space shuttle Buran (which was later converted for use with the ISS).[81][82] The facility is now used to control the Russian Orbital Segment
Russian Orbital Segment
of the ISS.[81] The flight control team were assigned roles similar to the system used by NASA
NASA
at their mission control centre in Houston, including:[82]

The Flight Director, who provided policy guidance and communicated with the mission management team; The Flight Shift Director, who was responsible for real-time decisions within a set of flight rules; The Mission Deputy Shift Manager (MDSM) for the MCC was responsible for the control room's consoles, computers and peripherals; The MDSM for Ground Control was responsible for communications; The MDSM for Crew Training was similar to NASA's 'capcom,' or capsule communicator; usually someone who had served as the Mir
Mir
crew's lead trainer.

Unused equipment[edit] Three command and control modules were constructed for the Mir program. One was used in space; one remained in a Moscow warehouse as a source of repair parts if needed,[83] and the third eventually was sold to an educational/entertainment complex in the US. In 1997, "Tommy Bartlett's World & Exploratory" purchased the unit and had it shipped to Wisconsin Dells, Wisconsin, where it became the centrepiece of the complex's Space Exploration wing.[84] Safety aspects[edit] Aging systems and atmosphere[edit] In the later years of the programme, particularly during the Shuttle- Mir
Mir
programme, Mir
Mir
suffered from various systems failures. It had been designed for five years of use, but eventually flew for fifteen, and in the 1990s was showing its age, with constant computer crashes, loss of power, uncontrolled tumbles through space and leaking pipes. NASA
NASA
astronaut John Blaha's account of the air quality on Mir—"very healthy, it's not dry, it's not humid. Nothing smells."[citation needed]—contradicts sharply the concerns about air quality on the space station that Jerry Linenger
Jerry Linenger
relates in his book about his time on the facility. Linenger says that due to the age of the space station, the cooling system had developed tiny leaks too small and numerous to be repaired, that permitted the constant release of coolant, making it unpleasant to breathe the air. He says that it was especially noticeable after he had made a spacewalk and become used to the bottled air in his spacesuit. When he returned to the station and again began breathing the air inside Mir, he was deeply shocked by the intensity of the chemical smell and very worried about the possible negative health effects of breathing such heavily contaminated air.[37] Various breakdowns of the Elektron oxygen-generating system were a concern; they led crews to become increasingly reliant on the backup Vika solid-fuel oxygen generator (SFOG) systems, which led to a fire during the handover between EO-22 and EO-23.[17][22] (see also ISS ECLSS) Accidents[edit]

A charred panel in Kvant-1
Kvant-1
following the Vika fire

Several accidents occurred which threatened the station's safety, such as the glancing collision between Kristall
Kristall
and Soyuz TM-17
Soyuz TM-17
during proximity operations in January 1994. The three most alarming incidents occurred during EO-23. The first was on 23 February 1997 during the handover period from EO-22 to EO-23, when a malfunction occurred in the backup Vika system, a chemical oxygen generator later known as solid-fuel oxygen generator (SFOG). The Vika malfunction led to a fire which burned for around 90 seconds (according to official sources at the TsUP; astronaut Jerry Linenger
Jerry Linenger
insists the fire burned for around 14 minutes), and produced large amounts of toxic smoke that filled the station for around 45 minutes. This forced the crew to don respirators, but some of the respirator masks initially worn were broken. Some of the fire extinguishers mounted on the walls of the newer modules were immovable.[22][37]

Picture of the damage caused by the collision with Progress M-34. Picture was taken by Space Shuttle
Space Shuttle
Atlantis during STS 86

The other two accidents concerned testing of the station's TORU manual docking system to manually dock Progress M-33 and Progress M-34. The tests were to gauge the performance of long-distance docking and the feasibility of removal of the expensive Kurs automatic docking system from Progress spacecraft. Due to malfunctioning equipment, both tests failed, with Progress M-33 narrowly missing the station and Progress M-34 striking Spektr
Spektr
and puncturing the module, causing the station to depressurise and leading to Spektr
Spektr
being permanently sealed off. This in turn led to a power crisis aboard Mir
Mir
as the module's solar arrays produced a large proportion of the station's electrical supply, causing the station to power down and begin to drift, requiring weeks of work to rectify before work could continue as normal.[17][22] Radiation
Radiation
and orbital debris[edit]

Space debris
Space debris
in low Earth orbit

Without the protection of the Earth's atmosphere, cosmonauts were exposed to higher levels of radiation from a steady flux of cosmic rays and trapped protons from the South Atlantic Anomaly. The station's crews were exposed to an absorbed dose of about 5.2 cGy over the course of a 115-day expedition, producing an equivalent dose of 14.75 cSv, or 1133 µSv per day.[85][86] This daily dose is approximately that received from natural background radiation on Earth in two years.[87] The radiation environment of the station was not uniform; closer proximity to the station's hull led to an increased radiation dose, and the strength of radiation shielding varied between modules; Kvant-2's being better than the core module, for instance.[88] The increased radiation levels pose a higher risk of crews developing cancer, and can cause damage to the chromosomes of lymphocytes. These cells are central to the immune system and so any damage to them could contribute to the lowered immunity experienced by cosmonauts. Over time, lowered immunity results in the spread of infection between crew members, especially in such confined areas. Radiation
Radiation
has also been linked to a higher incidence of cataracts in cosmonauts. Protective shielding and protective drugs may lower the risks to an acceptable level, but data is scarce and longer-term exposure will result in greater risks.[38] At the low altitudes at which Mir
Mir
orbited there is a variety of space debris, consisting of everything from entire spent rocket stages and defunct satellites, to explosion fragments, paint flakes, slag from solid rocket motors,[89] coolant released by RORSAT
RORSAT
nuclear powered satellites,[90] small needles, and many other objects. These objects, in addition to natural micrometeoroids,[91] posed a threat to the station as they could puncture pressurised modules and cause damage to other parts of the station, such as the solar arrays.[92] Micrometeoroids also posed a risk to spacewalking cosmonauts, as such objects could puncture their spacesuits, causing them to depressurise.[93] Meteor showers in particular posed a risk, and, during such storms, the crews slept in their Soyuz ferries to facilitate an emergency evacuation should Mir
Mir
be damaged.[17]

In media[edit]

In the movie Contact, S. R. Hadden, an American billionaire industrialist, moves onto Mir
Mir
to help relieve the pain of his terminal cancer. Mission to Mir, a documentary filmed in the IMAX format, was released in 1997. Mir, modified to have artificial gravity by rotating on itself, appears in the 1998 film Armageddon, as it is involved in a world-saving mission with two second generation Space Shuttle orbiters, the X-71s.

It is also the setting of the theme park attraction Armageddon – Les Effets Speciaux and the subject for the 1998 Armageddon-themed Revell/Monogram model kit "Russian Space Center".

The station, with Soyuz spacecraft
Soyuz spacecraft
docked, was used for the exterior views of the "MRSA international space station" in the Henry Danger special episodes "Space Invaders, Part 1" and "Space Invaders, Part 2"

References[edit]

^ "Mir-Orbit Data". Heavens-Above.com. 23 March 2001. Retrieved 30 June 2009.  ^ " Mir
Mir
FAQ – Facts and history". European Space Agency. 21 February 2001. Retrieved 19 August 2010.  ^ " Mir
Mir
Space Station – Mission Status Center". Spaceflight
Spaceflight
Now. 23 March 2001. Retrieved 19 August 2010.  ^ " NASA
NASA
– NSSDC – Spacecraft
Spacecraft
– Details – Mir". NASA. 23 July 2010. Retrieved 22 August 2010.  ^ "Soviet/Russian space programmes Q&A". NASASpaceflight.com. Retrieved 22 August 2010.  ^ a b c d Hall, R., ed. (2000). The History of Mir
Mir
1986–2000. British Interplanetary Society. ISBN 0-9506597-4-6.  ^ a b c Hall, R., ed. (2001). Mir: The Final Year. British Interplanetary Society. ISBN 0-9506597-5-4.  ^ a b c " Orbital period
Orbital period
of a planet". CalcTool. Retrieved 12 September 2010.  ^ " Mir
Mir
Space Station Observing". Satobs.org. 28 March 2001. Retrieved 12 September 2010.  ^ Mark Wade (4 September 2010). " Baikonur
Baikonur
LC200/39". Encyclopedia Astronautica. Archived from the original on 24 August 2010. Retrieved 25 September 2010.  ^ Mark Wade (4 September 2010). " Baikonur
Baikonur
LC81/23". Encyclopedia Astronautica. Archived from the original on 1 February 2010. Retrieved 25 September 2010.  ^ Macatangay A.V. & Perry J.L. (22 January 2007). "Cabin Air Quality On Board Mir
Mir
and the International Space Station—A Comparison" (PDF). Johnson Space Center
Johnson Space Center
& Marshall Spaceflight Center: NASA: 2.  ^ a b Jackman, Frank (29 October 2010). "ISS Passing Old Russian Mir In Crewed Time". Aviation Week.  ^ Patrick E. Tyler (24 March 2001). "Russians Find Pride, and Regret, in Mir's Splashdown". New York Times. Retrieved 9 March 2011.  ^ a b c d e f Mark Wade. " Mir
Mir
complex". Encyclopedia Astronautica. Archived from the original on 2 February 2007. Retrieved 16 April 2007.  ^ Joel W. Powell & Lee Brandon-Cremer (2011) [1992]. Space Shuttle Almanac. ISBN 0-9696313-0-8. Retrieved 23 August 2011.  ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh David Harland (30 November 2004). The Story of Space Station Mir. New York: Springer-Verlag New York Inc. ISBN 978-0-387-23011-5.  ^ a b Jim Dumoulin (29 June 2001). " STS-74
STS-74
Mission Summary". NASA. Retrieved 30 March 2007.  ^ a b c d e f g h i David S. F. Portree (March 1995). Mir
Mir
Hardware Heritage. NASA.  ^ Robert Zimmerman (3 September 2003). Leaving Earth: Space Stations, Rival Superpowers and the Quest for Interplanetary Travel. Henry (Joseph) Press. p. 297. ISBN 978-0-309-08548-9.  ^ a b c DeLombard R.; Ryaboukha S.; Hrovat K.; Moskowitz M. (June 1996). "Further Analysis of the Microgravity
Microgravity
Environment on Mir
Mir
Space Station during Mir-16". NASA. Archived from the original on 7 May 2009.  ^ a b c d e f g h i j Bryan Burrough (7 January 1998). Dragonfly: NASA and the Crisis Aboard Mir. London, UK: Fourth Estate Ltd. ISBN 978-1-84115-087-1.  ^ "European Users Guide to Low Gravity Platforms" (PDF). European Space Agency. 6 December 2005. pp. 1–3. Archived from the original (PDF) on 27 March 2009. Retrieved 13 July 2011.  ^ Craig Freudenrich (20 November 2000). "How Space Stations Work". Howstuffworks. Retrieved 23 November 2008.  ^ Clinton Anderson; et al. (30 January 1968). Report of the Committee on Aeronautical and Space Sciences, United States
United States
Senate—Apollo 204 Accident (PDF). Washington, DC: US Government Printing Office. p. 8. Archived from the original (PDF) on 5 December 2010.  ^ Mark Wade. "Soyuz TM-3". Encyclopedia Astronautica. Archived from the original on 8 January 2010. Retrieved 11 November 2010.  ^ Mark Wade. " Mir
Mir
EP-2". Encyclopedia Astronautica. Archived from the original on 8 January 2010. Retrieved 8 December 2010.  ^ Mark Wade. " Mir
Mir
EP-3". Encyclopedia Astronautica. Archived from the original on 29 November 2010. Retrieved 8 December 2010.  ^ "European Manned Spaceflight
Spaceflight
Patches" (PDF). ESA. 29 October 2009. Retrieved 15 December 2010.  ^ Donna Heivilin (21 June 1994). "Space Station: Impact of the Expanded Russian Role on Funding and Research" (PDF). Government Accountability Office. pp. 1–2. Retrieved 3 November 2006.  ^ Kim Dismukes (4 April 2004). "Shuttle– Mir
Mir
History/Background/How "Phase 1" Started". NASA. Retrieved 12 April 2007.  ^ "No Mir
Mir
flight for British businessman". BBC
BBC
News. 27 May 1999.  ^ Polly Sprenger (26 May 1999). "UK Businessman Booted Off Mir". Wired. Retrieved 16 July 2015.  ^ Fred Guterl (1 January 1998). "One Thing After Another". Discover. Retrieved 5 February 2011.  ^ a b "From Mir
Mir
to Mars". Public Broadcasting Service. Retrieved 14 September 2008.  ^ " Astronaut
Astronaut
Hams". Archived from the original on 30 December 2006.  ^ a b c d e Jerry Linenger
Jerry Linenger
(1 January 2001). Off the Planet: Surviving Five Perilous Months Aboard the Space Station Mir. New York, USA: McGraw-Hill. ISBN 978-0-07-137230-5.  ^ a b Jay Buckey (23 February 2006). Space Physiology. Oxford University Press USA. ISBN 978-0-19-513725-5.  ^ Amiko Kauderer (19 August 2009). "Do Tread on Me". NASA. Retrieved 23 August 2009.  ^ "Preventing "Sick" Spaceships - Science Mission Directorate". science.nasa.gov.  ^ "Daily life". ESA. 19 July 2004. Retrieved 28 October 2009.  ^ "Mutant space microbes attack ISS: 'Munch' metal, may crack glass". RT. 23 April 2012. Retrieved 9 May 2015.  ^ Trudy E. Bell (2007). "Preventing "Sick" Spaceships".  ^ a b "Mutant fungus from space". BBC. 8 March 2001. Retrieved 9 May 2015.  ^ a b c d e f g h i j k l m Rex Hall & David Shayler (2003). Soyuz: A Universal Spacecraft. Springer-Praxis. ISBN 978-1-85233-657-8.  ^ Alexander Anikeev. " Spacecraft
Spacecraft
"Soyuz-T15"". Manned Astronautics. Archived from the original on 1 March 2009. Retrieved 16 April 2007.  ^ Mark Wade. " Mir
Mir
EO-1". Encyclopedia Astronautica. Archived from the original on 7 April 2007. Retrieved 18 April 2007.  ^ Mark Wade. " Mir
Mir
EO-2". Encyclopedia Astronautica. Archived from the original on 9 April 2007. Retrieved 18 April 2007.  ^ Anatoly Zak. "Spacecraft: Manned: Mir: Kvant-1
Kvant-1
Module". RussianSpaceweb.com. Archived from the original on 24 April 2007. Retrieved 16 April 2007.  ^ a b Mark Wade. " Mir
Mir
EO-5". Encyclopedia Astronautica. Archived from the original on 9 April 2007. Retrieved 18 April 2007.  ^ Anatoly Zak. "Spacecraft: Manned: Mir: Kvant-2
Kvant-2
Module". RussianSpaceWeb.com. Archived from the original on 24 April 2007. Retrieved 18 April 2007.  ^ a b Mark Wade. " Mir
Mir
EO-6". Encyclopedia Astronautica. Archived from the original on 11 April 2007. Retrieved 19 April 2007.  ^ a b Anatoly Zak (25 May 2010). "Spacecraft: Manned: Mir: Kristall Module". RussianSpaceWeb.com. Archived from the original on 14 May 2011. Retrieved 17 December 2010.  ^ Mark Wade. " Mir
Mir
EO-10". Encyclopedia Astronautica. Archived from the original on 7 April 2007. Retrieved 19 April 2007.  ^ Mark Wade. "Spektr". Encyclopedia Astronautica. Archived from the original on 7 April 2007. Retrieved 21 April 2007.  ^ Mark Wade. "Priroda". Encyclopedia Astronautica. Archived from the original on 10 April 2007. Retrieved 21 April 2007.  ^ " STS-60
STS-60
Mission Summary". NASA. 29 June 2001. Retrieved 10 January 2014.  ^ a b c d e f g h i j k "Shuttle– Mir
Mir
History/Shuttle Flights and Mir Increments". NASA. Retrieved 30 March 2007.  ^ Jim Dumoulin (29 June 2001). " STS-63
STS-63
Mission Summary". NASA. Retrieved 30 March 2007.  ^ Kathy Sawyer (29 January 1995). "US & Russia
Russia
Find Common Ground in Space – Nations Overcome Hurdles in Ambitious Partnership". Washington Post. NewsBank. p. a1.  ^ David Scott & Alexei Leonov
Alexei Leonov
(30 April 2005). Two Sides of the Moon. Pocket Books. ISBN 978-0-7434-5067-6.  ^ Jim Dumoulin (29 June 2001). " STS-71
STS-71
Mission Summary". NASA. Retrieved 30 March 2007.  ^ Nick Nuttall (29 June 1995). "Shuttle homes in for Mir
Mir
docking". The Times. NewsBank.  ^ "CSA – STS-74
STS-74
– Daily Reports". Canadian Space Agency. 30 October 1999. Archived from the original on 16 July 2011. Retrieved 17 September 2009.  ^ William Harwood (15 November 1995). " Space Shuttle
Space Shuttle
docks with Mir – Atlantis uses manoeuvres similar to those needed for construction". Washington Post. NewsBank. p. a3.  ^ William Harwood (28 March 1996). "Shuttle becomes hard-hat area; spacewalking astronauts practice tasks necessary to build station". Washington Post. NewsBank. p. a3.  ^ Jim Dumoulin (29 June 2001). " STS-76
STS-76
Mission Summary". NASA. Retrieved 30 March 2007.  ^ Jim Dumoulin (29 June 2001). " STS-79
STS-79
Mission Summary". NASA. Retrieved 30 March 2007.  ^ Jim Dumoulin (29 June 2001). " STS-81
STS-81
Mission Summary". NASA. Retrieved 30 March 2007.  ^ David Hoffman (22 August 1997). "Crucial Mir
Mir
spacewalk carries high hopes – continued Western support could hinge on mission's success". Washington Post. pp. a1.  ^ Jim Dumoulin (29 June 2001). " STS-86
STS-86
Mission Summary". NASA. Retrieved 30 March 2007.  ^ Jim Dumoulin (29 June 2001). " STS-89
STS-89
Mission Summary". NASA. Retrieved 30 March 2007.  ^ Jim Dumoulin (29 June 2001). " STS-91
STS-91
Mission Summary". NASA. Retrieved 30 March 2007.  ^ William Harwood (13 June 1998). "Final American returns from Mir". Washington Post. NewsBank. p. a12.  ^ " Mir
Mir
Destroyed in Fiery Descent". CNN. 22 March 2001. Archived from the original on 21 November 2009. Retrieved 10 November 2009.  ^ "The Final Days of Mir". The Aerospace Corporation. Archived from the original on 3 August 2009. Retrieved 16 April 2007.  ^ " Mir
Mir
Space Station Reentry Page". Space Online. Archived from the original on 14 June 2007. Retrieved 16 April 2007.  ^ Kim Dismukes (4 March 2004). "Shuttle– Mir
Mir
History/Spacecraft/Mir Space Station/Soyuz". NASA. Retrieved 11 February 2010.  ^ Kim Dismukes (4 March 2004). "Shuttle– Mir
Mir
History/Spacecraft/Mir Space Station/Progress Detailed Description". NASA. Retrieved 11 February 2010.  ^ Mark Wade. " Mir
Mir
Docking Module". Encyclopedia Astronautica. Archived from the original on 8 January 2010. Retrieved 11 February 2010.  ^ a b Yuri Karash (14 August 2000). "Russia's Mission Control: Keeping ISS Aloft". Space.com. Archived from the original on 7 February 2010. Retrieved 13 July 2011.  ^ a b "Shuttle- Mir
Mir
Background – Mission Control Center – Moscow". NASA. 4 April 2004. Retrieved 6 November 2010.  ^ Air & Space/Smithsonian, October/November 1997, p. 17 ' Mir
Mir
Lands in Wisconsin" ^ [1] Explore Science, Space and Beyond! (Tommy Bartlett's World & Exploratory website, accessed 19 January 2016) ^ Yang TC; et al. (1997). "Biodosimetry Results from Space Flight Mir-18". Radiation
Radiation
Research. Radiation
Radiation
Research
Research
Society. 148 (148): S17–S23. doi:10.2307/3579712.  ^ Badhwar GD; et al. (1998). " Radiation
Radiation
environment on the Mir
Mir
orbital station during solar minimum". Advances in Space Research. Johnson Space Center: Committee on Space Research. 22 (4): 501–510. Bibcode:1998AdSpR..22..501B. doi:10.1016/S0273-1177(98)01070-9. PMID 11542778. CS1 maint: Explicit use of et al. (link) ^ "Report of the United Nations Scientific Committee on the Effects of Atomic Radiation
Radiation
to the General Assembly" (PDF). 26 July 2000. Retrieved 6 February 2011.  ^ Berger T; et al. (2001). "Measurement of the Depth Distribution of Average LET and Absorbed Dose Inside a Water – Filled Phantom on Board Space Station MIR" (PDF). Physica Medica. Vienna. 17 (Supplement 1): 128–130. PMID 11770528. Retrieved 6 February 2011.  ^ "Space Debris Basics The Aerospace Corporation". www.aerospace.org. Retrieved 28 November 2015.  ^ Klinkrad, Heiner (2006). Space Debris: Models and Risk Analysis. Praxis Publishing Ltd. p. 83. ISBN 3540376747.  ^ F. L. Whipple (1949). "The Theory of Micrometeoroids". Popular Astronomy. 57: 517. Bibcode:1949PA.....57..517W.  ^ Henry Nahra (24–29 April 1989). "Effect of Micrometeoroid
Micrometeoroid
and Space Debris Impacts on the Space Station Freedom
Space Station Freedom
Solar Array Surfaces" (PDF). NASA. Retrieved 7 October 2009.  ^ Leonard David (7 January 2002). "Space Junk and ISS: A Threatening Problem". Space.com. Archived from the original on 23 May 2009. Retrieved 13 July 2011. 

External links[edit]

Wikimedia Commons has media related to Mir.

Wikisource
Wikisource
has original text related to this article: Mir
Mir
Hardware Heritage

Wikisource
Wikisource
has original text related to this article: Mir
Mir
Mission Chronicle

Spaceflight
Spaceflight
portal Space portal

NASA
NASA
animation of Mir's deorbit Mir
Mir
Diary Diagrams, pictures and background info Information on problems aboard Mir Shuttle-Mir: Phase 1 Program Joint Report Mir
Mir
Space Station (NASA)

Preceded by Salyut 7 Mir 1986–2001 Succeeded by Mir-2
Mir-2
as the ROS in the ISS

v t e

Crewed spacecraft

Current

Russia

Soyuz

China

Shenzhou

In development

United States

Dragon 2 CST-100 Starliner New Shepard SpaceShipTwo BFR spaceship Orion Dream Chaser

Russia

Federation

India

ISRO Orbital Vehicle

Iran

manned project

Former

Soviet Union

Vostok Voskhod

United States

Mercury X-15 Gemini Apollo Space Shuttle SpaceShipOne

v t e

← 1985  ·  Orbital launches in 1986  ·  1987 →

Kosmos 1715 Kosmos 1716 · Kosmos 1717 · Kosmos 1718 · Kosmos 1719 · Kosmos 1720 · Kosmos 1721 · Kosmos 1722 · Kosmos 1723 STS-61-C
STS-61-C
(Satcom K1) Kosmos 1724 Kosmos 1725 Kosmos 1726 Gran' No.29L Kosmos 1727 Kosmos 1728 STS-51-L
STS-51-L
(TDRS-B · SPARTAN-203) Shiyong Tongbu Tongxin Weixing 1 Kosmos 1729 Kosmos 1730 Kosmos 1731 USA-15 · USA-16 · USA-17 · USA-18 Kosmos 1732 Yuri 2b Mir
Mir
/ Core Kosmos 1733 SPOT-1 · Viking Kosmos 1734 Kosmos 1735 Soyuz T-15
Soyuz T-15
Progress 25 Kosmos 1736 Kosmos 1737 Unnamed GStar-2 · Brasilsat A2 Kosmos 1738 Kosmos 1739 Kosmos 1740 Kosmos 1741 KH-9 No.1220 · Pearl Ruby Molniya-3 No.43 Progress 26 GOES-G
GOES-G
Kosmos 1742 Kosmos 1743 Soyuz TM-1
Soyuz TM-1
Kosmos 1744 Kosmos 1745 Ekran No.30L Meteor-2 No.18 Kosmos 1746 Kosmos 1747 Intelsat VA F-14 Kosmos 1748 · Kosmos 1749 · Kosmos 1750 · Kosmos 1751 · Kosmos 1752 · Kosmos 1753 · Kosmos 1754 · Kosmos 1755 Kosmos 1756 Gorizont No.24L Kosmos 1757 Kosmos 1758 Kosmos 1759 Kosmos 1760 Molniya-3 No.44 Kosmos 1761 Kosmos 1762 Kosmos 1763 Kosmos 1764 Kosmos 1765 Kosmos 1766 Kosmos 1767 Molniya-1 No.59 Kosmos 1768 Kosmos 1769 Kosmos 1770 Ajisai · Fuji 1a · Jindai Kosmos 1771 Kosmos 1772 Kosmos 1773 Kosmos 1774 Kosmos 1775 Kosmos 1776 Molniya-1 No.57 USA-19
USA-19
Kosmos 1777 Kosmos 1778 · Kosmos 1779 · Kosmos 1780 Kosmos 1781 NOAA-10 Kosmos 1782 Kosmos 1783 Fanhui Shi Weixing 9 Kosmos 1784 Unnamed Kosmos 1785 Molniya-3 No.41 Kosmos 1786 Kosmos 1787 Gran' No.30L Kosmos 1788 Kosmos 1789 Kosmos 1790 Kosmos 1791 Kosmos 1792 Polar Bear Molniya-1 No.60 Gorizont No.22L Kosmos 1793 Kosmos 1794 · Kosmos 1795 · Kosmos 1796 · Kosmos 1797 · Kosmos 1798 · Kosmos 1799 · Kosmos 1800 · Kosmos 1801 Kosmos 1802 Mech-K No.303 Kosmos 1803 Kosmos 1804 USA-20 Kosmos 1805 Kosmos 1806 Kosmos 1807 Kosmos 1808 Kosmos 1809 Kosmos 1810 Molniya-1 No.62

Payloads are separated by bullets ( · ), launches by pipes ( ). Manned flights are indicated in bold text. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in (brackets).

v t e

Mir

Soviet modules

Core module Kvant-1 Kvant-2 Kristall

Russian/American modules

Spektr Docking module Priroda

Other subsystems

Lyappa arm Strela crane APAS-89 Luch satellites Mir
Mir
Environmental Effects Payload

Visiting spacecraft

Soyuz Progress (VBK-Raduga) Space Shuttle

Other articles

Shuttle- Mir
Mir
programme Deorbit of Mir MirCorp

Related lists

List of human spaceflights to Mir List of unmanned spaceflights to Mir List of Mir
Mir
expeditions List of Mir
Mir
spacewalks List of Mir
Mir
visitors

v t e

Human spaceflights to Mir

Soyuz T-15 Soyuz TM-2 Soyuz TM-3 Soyuz TM-4 Soyuz TM-5 Soyuz TM-6 Soyuz TM-7 Soyuz TM-8 Soyuz TM-9 Soyuz TM-10 Soyuz TM-11 Soyuz TM-12 Soyuz TM-13 Soyuz TM-14 Soyuz TM-15 Soyuz TM-16 Soyuz TM-17 Soyuz TM-18 Soyuz TM-19 Soyuz TM-20 STS-63 Soyuz TM-21 STS-71 Soyuz TM-22 STS-74 Soyuz TM-23 STS-76 Soyuz TM-24 STS-79 STS-81 Soyuz TM-25 STS-84 Soyuz TM-26 STS-86 STS-89 Soyuz TM-27 STS-91 Soyuz TM-28 Soyuz TM-29 Soyuz TM-30

v t e

Expeditions to Mir

Long-term

EO-1 EO-2 EO-3 EO-4 EO-5 EO-6 EO-7 EO-8 EO-9 EO-10 EO-11 EO-12 EO-13 EO-14 EO-15 EO-16 EO-17 EO-18 EO-19 EO-20 EO-21 EO-22 EO-23 EO-24 EO-25 EO-26 EO-27 EO-28

Short-term

EP-1 EP-2 EP-3 ...

v t e

Shuttle- Mir
Mir
Program

Main articles

Shuttle- Mir
Mir
Program Mir Space Shuttle

Missions

STS-60 STS-63 Soyuz TM-21 STS-71 STS-74 STS-76 STS-79 STS-81 STS-84 STS-86 STS-89 STS-91

Increments

Thagard Lucid Blaha Linenger Foale Wolf Thomas

v t e

Soviet and Russian government manned space programs

Active

Soyuz ISS (joint)

Russian Orbital Segment

In development

Federation OPSEK

Past

Vostok Voskhod Salyut Almaz
Almaz
(incorporated into Salyut program) / TKS Apollo–Soyuz (joint) Mir

Shuttle- Mir
Mir
(joint)

Cancelled

Zond (7K-L1) (Moon flyby) N1-L3
N1-L3
(Moon landing) LK-700
LK-700
(alternate Moon landing) Zvezda (moonbase) TMK
TMK
(Mars/Venus flyby) Spiral Zvezda Energia
Energia
/ Buran Zarya MAKS Kliper

List of Soyuz missions List of Soviet manned space missions List of Russian manned space missions

v t e

United States
United States
human spaceflight programs

Active

International Space Station
International Space Station
(joint) Orion (in development)

Previous

X-15 (suborbital) Mercury Gemini Apollo Skylab Apollo–Soyuz (with USSR) Space Shuttle Shuttle- Mir
Mir
(with Russia)

Canceled

MISS Orion (nuclear) Dyna-Soar Manned Orbiting Laboratory National Aero-Space Plane Space Station Freedom
Space Station Freedom
(now ISS) Orbital Space Plane Project Constellation

v t e

Space stations and habitats

Active

International Space Station
International Space Station
(ISS) Tiangong-2

Defunct

Soviet Union and Russia

Salyut

Salyut 1 DOS-2† Salyut 2† ‡ Cosmos 557† Salyut 3‡ Salyut 4 Salyut 5‡ Salyut 6 Salyut 7

Mir

United States

OPS 0855° Skylab Genesis I° and II° (private, Bigelow Aerospace)

China

Tiangong

Tiangong-1

Cancelled

Individual projects

Manned Orbiting Laboratory Skylab
Skylab
B Galaxy Almaz
Almaz
commercial Tiangong-3

Incorporated into ISS

Space Station Freedom

USOS

Columbus MTFF Mir-2

ROS

Developmental

China

Chinese large modular space station

Private

Bigelow Commercial Space Station

Russia

OPSEK LOS

International

Lunar Orbital Platform-Gateway

Concepts

Bernal sphere Bishop Ring Deep Space Habitat Exploration Gateway Platform Industrial Space Facility McKendree cylinder Nautilus-X O'Neill cylinder Orbital Technologies Commercial Space Station Rotating wheel Wet workshop Space habitat Stanford torus Skylab
Skylab
II (FlexCraft)

Related

Space stations and habitats in fiction

Notes: † Never inhabited due to launch or on-orbit failure, ‡ Part of the Almaz
Almaz
military program, ° Never inhabited, lacks docking mechanism.

v t e

Spaceflight

General

Astrodynamics History

Timeline Space Race Asian Space Race Records Accidents and incidents

Space policy

China European Union India Japan Russia Soviet Union United States

Space law

Outer Space Treaty Rescue Agreement Space Liability Convention Registration Convention Moon Treaty

Private spaceflight

Applications

Astronomy Earth observation

Archaeology Imagery and mapping Reconnaissance Weather and environment monitoring

Satellite
Satellite
communications

Internet Radio Telephone Television

Satellite
Satellite
navigation Commercial use of space Space launch
Space launch
market competition Militarisation of space Space architecture Space exploration Space research Space technology Space weather

Human spaceflight

General

Astronaut Life support system

Animals in space Bioastronautics Space suit

Extravehicular activity Weightlessness Space toilet Space tourism Space colonization

Programs

Vostok Mercury Voskhod Gemini Soyuz Apollo

Skylab Apollo–Soyuz

Space Shuttle Mir

Shuttle–Mir

International Space Station Shenzhou Tiangong

Health issues

Effect of spaceflight on the human body

Space adaptation syndrome

Health threat from cosmic rays Psychological and sociological effects of spaceflight Space and survival Space medicine Space nursing

Spacecraft

Launch vehicle Rocket Spaceplane Robotic spacecraft

Satellite Space probe Lander Rover Self-replicating spacecraft

Spacecraft
Spacecraft
propulsion

Rocket
Rocket
engine Electric propulsion Solar sail Gravity assist

Destinations

Sub-orbital Orbital

Geocentric Geosynchronous

Interplanetary Interstellar Intergalactic

Space launch

Direct ascent Escape velocity Expendable and reusable launch systems Launch pad Non-rocket spacelaunch Spaceport

Ground segment

Flight controller Ground station
Ground station
(Pass) Mission control center

Space agencies

 CoNAE  AEB  CSA  CNSA  ESA  CNES  DLR  ISRO  LAPAN  ISA  ISA  ASI  JAXA  NADA  KARI  SUPARCO  Roscosmos  SNSB  SSAU  UKSA  NASA

  Category   Portal   WikiProject

Authority control

WorldCat Identities LCCN: n96054812 GND: 4475739-6 NDL: 00567715 NKC: m