Parouse.com
 Parouse.com



Corals are marine invertebrates in the class Anthozoa
Anthozoa
of phylum Cnidaria. They typically live in compact colonies of many identical individual polyps. The group includes the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton. A coral "group" is a colony of myriad genetically identical polyps. Each polyp is a sac-like animal typically only a few millimeters in diameter and a few centimeters in length. A set of tentacles surround a central mouth opening. An exoskeleton is excreted near the base. Over many generations, the colony thus creates a large skeleton characteristic of the species. Individual heads grow by asexual reproduction of polyps. Corals also breed sexually by spawning: polyps of the same species release gametes simultaneously over a period of one to several nights around a full moon. Although some corals are able to catch small fish and plankton using stinging cells on their tentacles, most corals obtain the majority of their energy and nutrients from photosynthetic unicellular dinoflagellates in the genus Symbiodinium
Symbiodinium
that live within their tissues. These are commonly known as zooxanthellae. Such corals require sunlight and grow in clear, shallow water, typically at depths less than 60 metres (200 ft). Corals are major contributors to the physical structure of the coral reefs that develop in tropical and subtropical waters, such as the enormous Great Barrier Reef
Great Barrier Reef
off the coast of Queensland, Australia. Other corals do not rely on zooxanthellae and can live in much deeper water, with the cold-water genus Lophelia
Lophelia
surviving as deep as 3,300 metres (10,800 ft).[4] Some have been found on the Darwin Mounds, north-west of Cape Wrath, Scotland, and others as far north as off the coast of Washington State and the Aleutian Islands.

Contents

1 Taxonomy 2 Anatomy

2.1 Soft Corals 2.2 Stony Corals

3 Ecology

3.1 Feeding 3.2 Intracellular symbionts

4 Reproduction

4.1 Sexual

4.1.1 Broadcasters 4.1.2 Brooders 4.1.3 Planulae

4.2 Asexual 4.3 Colony division

5 Reefs 6 Evolutionary history 7 Status

7.1 Threats 7.2 Protection

8 Relation to humans

8.1 Jewelry 8.2 Medicine 8.3 Construction 8.4 Climate research

8.4.1 Geochemistry

8.4.1.1 Strontium/calcium ratio anomaly 8.4.1.2 Oxygen isotope anomaly 8.4.1.3 Sea surface temperature
Sea surface temperature
and sea surface salinity 8.4.1.4 Limited climate research on current species

8.5 Aquaria 8.6 Aquaculture

9 Gallery 10 References 11 Sources 12 External links

Taxonomy[edit]

Anthozoa

 Hexacorallia 

Actiniaria

Antipatharia

Corallimorpharia

Scleractinia

Zoantharia

 Octocorallia 

Alcyonacea

Helioporacea

Pennatulacea

 Ceriantharia 

Penicillaria

Spirularia

Phylogeny
Phylogeny
of Anthozoa, relationships of the orders still undefined[5]

Aristotle's pupil Theophrastus
Theophrastus
described the red coral, korallion in his book on stones, implying it was a mineral; but he described it as a deep-sea plant in his Enquiries on Plants, where he also mentions large stony plants that reveal bright flowers when under water in the Gulf of Heroes.[6] Pliny the Elder
Pliny the Elder
stated boldly that several sea creatures including sea nettles and sponges "are neither animals nor plants, but are possessed of a third nature (tertius natura)".[7] Petrus Gyllius
Petrus Gyllius
copied Pliny, introducing the term zoophyta for this third group in his 1535 book On the French and Latin Names of the Fishes of the Marseilles Region; it is popularly but wrongly supposed that Aristotle
Aristotle
created the term.[7] Gyllius further noted, following Aristotle, how hard it was to define what was a plant and what was an animal.[7] The Persian polymath Al-Biruni
Al-Biruni
(d. 1048) classified sponges and corals as animals, arguing that they respond to touch.[8] Nevertheless, people believed corals to be plants until the eighteenth century, when William Herschel
William Herschel
used a microscope to establish that coral had the characteristic thin cell membranes of an animal.[9] The phylogeny of Anthozoans is not clearly understood and a number of different models have been proposed. Within the Hexacorallia, the sea anemones, coral anemones and stony corals may constitute a monophyletic grouping united by their six-fold symmetry and cnidocyte trait. The Octocorallia
Octocorallia
appears to be monophyletic, and primitive members of this group may have been stolonate.[10] The cladogram presented here comes from a 2014 study by Stampar et al. which was based on the divergence of mitochondrial DNA within the group and on nuclear markers.[5] Corals are classified in the class Anthozoa
Anthozoa
of the phylum Cnidaria. They are divided into three subclasses, Hexacorallia, Octocorallia,[11] and Ceriantharia.[5][12] The Hexacorallia
Hexacorallia
include the stony corals, the sea anemones and the zoanthids. These groups have polyps that generally have 6-fold symmetry. The Octocorallia include blue coral, soft corals, sea pens, and gorgonians (sea fans and sea whips). These groups have polyps with 8-fold symmetry, each polyp having eight tentacles and eight mesenteries. Ceriantharia
Ceriantharia
are the tube-dwelling anemones.[10] Fire corals are not true corals, being in the order Anthomedusa (sometimes known as Anthoathecata) of the class Hydrozoa.[13] Anatomy[edit]

Anatomy of a stony coral polyp

Corals are sessile animals in the class Anthozoa
Anthozoa
and differ from most other cnidarians in not having a medusa stage in their life cycle. The body unit of the animal is a polyp. Most corals are colonial, the initial polyp budding to produce another and the colony gradually developing from this small start. In stony corals, also known as hard corals, the polyps produce a skeleton composed of calcium carbonate to strengthen and protect the organism. This is deposited by the polyps and by the coenosarc, the living tissue that connects them. The polyps sit in cup-shaped depressions in the skeleton known as corallites. Colonies of stony coral are very variable in appearance; a single species may adopt an encrusting, plate-like, bushy, columnar or massive solid structure, the various forms often being linked to different types of habitat, with variations in light level and water movement being significant.[10] Soft Corals[edit] In soft corals, there is no stony skeleton but the tissues are often toughened by the presence of tiny skeletal elements known as sclerites, which are made from calcium carbonate. Soft corals are very variable in form and most are colonial. A few soft corals are stolonate, but the polyps of most are connected by sheets of coenosarc. In some species this is thick and the polyps are deeply embedded. Some soft corals are encrusting or form lobes. Others are tree-like or whip-like and have a central axial skeleton embedded in the tissue matrix.[14] This is composed either of a fibrous protein called gorgonin or of a calcified material. In both stony and soft corals, the polyps can be retracted, with stony corals relying on their hard skeleton and cnidocytes for defence against predators, and soft corals generally relying on chemical defences in the form of toxic substances present in the tissues known as terpenoids.[10] Stony Corals[edit]

Montastraea cavernosa
Montastraea cavernosa
polyps with tentacles extended

The polyps of stony corals have six-fold symmetry while those of soft corals have eight. The mouth of each polyp is surrounded by a ring of tentacles. In stony corals these are cylindrical and taper to a point, but in soft corals they are pinnate with side branches known as pinnules. In some tropical species these are reduced to mere stubs and in some they are fused to give a paddle-like appearance.[15] In most corals, the tentacles are retracted by day and spread out at night to catch plankton and other small organisms. Shallow water species of both stony and soft corals can be zooxanthellate, the corals supplementing their plankton diet with the products of photosynthesis produced by these symbionts.[10] The polyps interconnect by a complex and well-developed system of gastrovascular canals, allowing significant sharing of nutrients and symbionts.[16] Ecology[edit] Feeding[edit] Polyps feed on a variety of small organisms, from microscopic zooplankton to small fish. The polyp's tentacles immobilize or kill prey using their nematocysts. These cells carry venom which they rapidly release in response to contact with another organism. A dormant nematocyst discharges in response to nearby prey touching the trigger (cnidocil). A flap (operculum) opens and its stinging apparatus fires the barb into the prey. The venom is injected through the hollow filament to immobilise the prey; the tentacles then manoeuvre the prey to the mouth.[17] The tentacles then contract to bring the prey into the stomach. Once the prey is digested, the stomach reopens, allowing the elimination of waste products and the beginning of the next hunting cycle. They can scavenge drifting organic molecules and dissolved organic molecules.[18]:24 Intracellular symbionts[edit] Many corals, as well as other cnidarian groups such as Aiptasia
Aiptasia
(a sea anemone) form a symbiotic relationship with a class of dinoflagellate algae, zooxanthellae of the genus Symbiodinium.[18]:24 Aiptasia, a familiar pest among coral reef aquarium hobbyists, serves as a valuable model organism in the study of cnidarian-algal symbiosis.[19] Typically, each polyp harbors one species of algae, and coral species show a preference for Symbiodinium.[20] Young corals are not born with zooxanthellae, but acquire the algae from the surrounding environment, including the water column and local sediment.[21] Via photosynthesis, these provide energy for the coral, and aid in calcification.[22] The main benefit of the zooxanthellae is their ability to photosynthesize. By using this technique, zooxanthellae are able to supply corals with the products of photosynthesis, including glucose, glycerol, and amino acids, which the corals can use for energy.[23] As much as 30% of the tissue of a polyp may be algal material.[18]:23 Zooxanthellae
Zooxanthellae
also benefit corals by aiding in waste removal.[24] The algae benefit from a safe place to live and consume the polyp's carbon dioxide and nitrogenous waste. Due to the strain the algae can put on the polyp, stress on the coral often drives them to eject the algae. Mass ejections are known as coral bleaching, because the algae contribute to coral's brown coloration; other colors, however, are due to host coral pigments, such as green fluorescent proteins (GFPs). Ejection increases the polyp's chance of surviving short-term stress—they can regain algae, possibly of a different species at a later time. If the stressful conditions persist, the polyp eventually dies.[25] Zooxanthellae
Zooxanthellae
are located within the corals' cytoplasm and due to the algae's photosynthetic activity, the internal pH of the coral can be raised; this behavior indicates that the zooxanthellae are responsible to some extent for the metabolism of their host corals [26] Reproduction[edit] Corals can be both gonochoristic (unisexual) and hermaphroditic, each of which can reproduce sexually and asexually. Reproduction also allows coral to settle in new areas. Reproduction is coordinated by chemical communication. Sexual[edit]

Life cycles of broadcasters and brooders

Corals predominantly reproduce sexually. About 25% of hermatypic corals (stony corals) form single sex (gonochoristic) colonies, while the rest are hermaphroditic.[27] Broadcasters[edit] About 75% of all hermatypic corals "broadcast spawn" by releasing gametes—eggs and sperm—into the water to spread offspring. The gametes fuse during fertilization to form a microscopic larva called a planula, typically pink and elliptical in shape. A typical coral colony forms several thousand larvae per year to overcome the odds against formation of a new colony.[28]

A male great star coral, Montastraea cavernosa, releasing sperm into the water.

Synchronous spawning is very typical on the coral reef, and often, even when multiple species are present, all corals spawn on the same night. This synchrony is essential so male and female gametes can meet. Corals rely on environmental cues, varying from species to species, to determine the proper time to release gametes into the water. The cues involve temperature change, lunar cycle, day length, and possibly chemical signalling.[27] Synchronous spawning may form hybrids and is perhaps involved in coral speciation.[29] The immediate cue is most often sunset, which cues the release.[27] The spawning event can be visually dramatic, clouding the usually clear water with gametes. Brooders[edit] Brooding species are most often ahermatypic (not reef-building) in areas of high current or wave action. Brooders release only sperm, which is negatively buoyant, sinking on to the waiting egg carriers who harbor unfertilized eggs for weeks. Synchronous spawning events sometimes occurs even with these species.[27] After fertilization, the corals release planula that are ready to settle.[22] Planulae[edit] Planula larvae exhibit positive phototaxis, swimming towards light to reach surface waters, where they drift and grow before descending to seek a hard surface to which they can attach and begin a new colony. They also exhibit positive sonotaxis, moving towards sounds that emanate from the reef and away from open water.[30] High failure rates afflict many stages of this process, and even though millions of gametes are released by each colony, few new colonies form. The time from spawning to settling is usually two to three days, but can be up to two months.[31] The larva grows into a polyp and eventually becomes a coral head by asexual budding and growth. Asexual[edit]

Basal plates (calices) of Orbicella annularis showing multiplication by budding (small central plate) and division (large double plate)

Tabulate coral
Tabulate coral
Aulopora
Aulopora
(Devonian) showing initial budding

Within a coral head, the genetically identical polyps reproduce asexually, either by budding (gemmation) or by dividing, whether longitudinally or transversely. Budding
Budding
involves splitting a smaller polyp from an adult.[28] As the new polyp grows, it forms its body parts. The distance between the new and adult polyps grows, and with it, the coenosarc (the common body of the colony). Budding
Budding
can be intratentacular, from its oral discs, producing same-sized polyps within the ring of tentacles, or extratentacular, from its base, producing a smaller polyp. Division forms two polyps that each become as large as the original. Longitudinal division begins when a polyp broadens and then divides its coelenteron (body), effectively splitting along its length. The mouth divides and new tentacles form. The two polyps thus created then generate their missing body parts and exoskeleton. Transversal division occurs when polyps and the exoskeleton divide transversally into two parts. This means one has the basal disc (bottom) and the other has the oral disc (top); the new polyps must separately generate the missing pieces. Asexual reproduction
Asexual reproduction
offers the benefits of high reproductive rate, delaying senescence, and replacement of dead modules, as well as geographical distribution.[32] Colony division[edit] Whole colonies can reproduce asexually, forming two colonies with the same genotype. The possible mechanisms include fission, bailout and fragmentation. Fission occurs in some corals, especially among the family Fungiidae, where the colony splits into two or more colonies during early developmental stages. Bailout occurs when a single polyp abandons the colony and settles on a different substrate to create a new colony. Fragmentation involves individuals broken from the colony during storms or other disruptions. The separated individuals can start new colonies.[33] Reefs[edit]

Locations of coral reefs around the world

Main article: Coral
Coral
reef See also: Coral reef
Coral reef
fish and List of reefs Many corals in the order Scleractinia
Scleractinia
are hermatypic, meaning that they are involved in building reefs. Most such corals obtain some of their energy from zooxanthellae in the genus Symbiodinium. These are symbiotic photosynthetic dinoflagellates which require sunlight; reef-forming corals are therefore found mainly in shallow water. They secrete calcium carbonate to form hard skeletons that become the framework of the reef. However, not all reef-building corals in shallow water contain zooxanthellae, and some deep water species, living at depths to which light cannot penetrate, form reefs but do not harbour the symbionts.[34]

Staghorn coral
Staghorn coral
( Acropora
Acropora
cervicornis) is an important hermatypic coral from the Caribbean

There are various types of shallow-water coral reef, including fringing reefs, barrier reefs and atolls; most occur in tropical and subtropical seas. They are very slow-growing, adding perhaps one centimetre (0.4 in) in height each year. The Great Barrier Reef is thought to have been laid down about two million years ago. Over time, corals fragment and die, sand and rubble accumulates between the corals, and the shells of clams and other molluscs decay to form a gradually evolving calcium carbonate structure.[35] Coral
Coral
reefs are extremely diverse marine ecosystems hosting over 4,000 species of fish, massive numbers of cnidarians, molluscs, crustaceans, and many other animals.[36] Evolutionary history[edit]

Solitary rugose coral (Grewingkia) in three views; Ordovician, southeastern Indiana

Although corals first appeared in the Cambrian
Cambrian
period,[37] some 542 million years ago, fossils are extremely rare until the Ordovician
Ordovician
period, 100 million years later, when rugose and tabulate corals became widespread. Paleozoic
Paleozoic
corals often contained numerous endobiotic symbionts.[38][39] Tabulate corals occur in limestones and calcareous shales of the Ordovician
Ordovician
and Silurian
Silurian
periods, and often form low cushions or branching masses of calcite alongside rugose corals. Their numbers began to decline during the middle of the Silurian
Silurian
period, and they became extinct at the end of the Permian
Permian
period, 250 million years ago.[40] Rugose or horn corals became dominant by the middle of the Silurian period, and became extinct early in the Triassic
Triassic
period. The rugose corals existed in solitary and colonial forms, and were also composed of calcite.[41] The scleractinian corals filled the niche vacated by the extinct rugose and tabulate species. Their fossils may be found in small numbers in rocks from the Triassic
Triassic
period, and became common in the Jurassic
Jurassic
and later periods.[42] Scleractinian skeletons are composed of a form of calcium carbonate known as aragonite.[43] Although they are geologically younger than the tabulate and rugose corals, the aragonite of their skeletons is less readily preserved, and their fossil record is accordingly less complete.

Timeline of the major coral fossil record and developments from 650 m.y.a. to present.[44][45]

edit

At certain times in the geological past, corals were very abundant. Like modern corals, these ancestors built reefs, some of which ended as great structures in sedimentary rocks. Fossils of fellow reef-dwellers algae, sponges, and the remains of many echinoids, brachiopods, bivalves, gastropods, and trilobites appear along with coral fossils. This makes some corals useful index fossils.[46] Coral fossils are not restricted to reef remnants, and many solitary fossils may be found elsewhere, such as Cyclocyathus, which occurs in England's Gault clay
Gault clay
formation. Status[edit] Main article: Environmental issues with coral reefs Threats[edit]

A healthy coral reef has a striking level of biodiversity in many forms of marine life.

Coral
Coral
reefs are under stress around the world.[47] In particular, coral mining, agricultural and urban runoff, pollution (organic and inorganic), overfishing, blast fishing, disease, and the digging of canals and access into islands and bays are localized threats to coral ecosystems. Broader threats are sea temperature rise, sea level rise and pH changes from ocean acidification, all associated with greenhouse gas emissions.[48] In 1998, 16% of the world's reefs died as a result of increased water temperature.[49] Approximately 10% of the world's coral reefs are dead.[50][51][52] About 60% of the world's reefs are at risk due to human-related activities.[53] The threat to reef health is particularly strong in Southeast Asia, where 80% of reefs are endangered.[54] Over 50% of the world's coral reefs may be destroyed by 2030; as a result, most nations protect them through environmental laws.[55] In the Caribbean and tropical Pacific, direct contact between ~40–70% of common seaweeds and coral causes bleaching and death to the coral via transfer of lipid-soluble metabolites.[56] Seaweed and algae proliferate given adequate nutrients and limited grazing by herbivores such as parrotfish. Water temperature changes of more than 1–2 °C (1.8–3.6 °F) or salinity changes can kill some species of coral. Under such environmental stresses, corals expel their Symbiodinium; without them coral tissues reveal the white of their skeletons, an event known as coral bleaching.[57] Submarine springs found along the coast of Mexico's Yucatán Peninsula produce water with a naturally low pH (relatively high acidity) providing conditions similar to those expected to become widespread as the oceans absorb carbon dioxide.[58] Surveys discovered multiple species of live coral that appeared to tolerate the acidity. The colonies were small and patchily distributed, and had not formed structurally complex reefs such as those that compose the nearby Mesoamerican Barrier Reef System.[58] Protection[edit] Main article: Coral reef
Coral reef
protection Marine Protected Areas (MPAs), Biosphere reserves, marine parks, national monuments world heritage status, fishery management and habitat protection can protect reefs from anthropogenic damage.[59] Many governments now prohibit removal of coral from reefs, and inform coastal residents about reef protection and ecology. While local action such as habitat restoration and herbivore protection can reduce local damage, the longer-term threats of acidification, temperature change and sea-level rise remain a challenge.[48] To eliminate destruction of corals in their indigenous regions, projects have been started to grow corals in non-tropical countries.[60][61] Relation to humans[edit] Local economies near major coral reefs benefit from an abundance of fish and other marine creatures as a food source. Reefs also provide recreational scuba diving and snorkeling tourism. These activities can damage coral but international projects such as Green Fins
Green Fins
that encourage dive and snorkel centres to follow a Code of Conduct have been proven to mitigate these risks.[62] Live coral is highly sought after for aquaria. Soft corals are easier to maintain in captivity than hard corals.[63] Jewelry[edit]

6-strand necklace, Navajo (Native American), ca. 1920s, Brooklyn Museum

Main article: Coral
Coral
(precious) Corals' many colors give it appeal for necklaces and other jewelry. Intensely red coral is prized as a gemstone. Sometimes called fire coral, it is not the same as fire coral. Red coral is very rare because of overharvesting.[64] Always considered a precious mineral, "the Chinese have long associated red coral with auspiciousness and longevity because of its color and its resemblance to deer antlers (so by association, virtue, long life, and high rank".[65] It reached its height of popularity during the Manchu or Qing Dynasty (1644-1911) when it was almost exclusively reserved for the emperor's use either in the form of coral beads (often combined with pearls) for court jewelry or as decorative Penjing
Penjing
(decorative miniature mineral trees). Coral
Coral
was known as shanhu in Chinese. The "early-modern 'coral network' [began in] the Mediterranean Sea [and found its way] to Qing China via the English East India Company".[66] There were strict rules regarding its use in a code established by the Qianlong Emperor
Qianlong Emperor
in 1759. Medicine[edit]

Depiction of coral in the Juliana Anicia Codex, a copy, written in Constantinople
Constantinople
in 515 AD, of Dioscorides' 1st century AD Greek work. The facing page states that coral can be used to treat ulcers.[67]

In medicine, chemical compounds from corals are used to treat cancer, AIDS and pain, and for other uses. Coral
Coral
skeletons, e.g. Isididae
Isididae
are also used for bone grafting in humans.[68] Coral
Coral
Calx, known as Praval Bhasma in Sanskrit, is widely used in traditional system of Indian medicine as a supplement in the treatment of a variety of bone metabolic disorders associated with calcium deficiency.[69] In classical times ingestion of pulverized coral, which consists mainly of the weak base calcium carbonate, was recommended for calming stomach ulcers by Galen
Galen
and Dioscorides.[70] Construction[edit]

Tabulate coral
Tabulate coral
(a syringoporid); Boone limestone (Lower Carboniferous) near Hiwasse, Arkansas, scale bar is 2.0 cm.

Coral
Coral
reefs in places such as the East African coast are used as a source of building material.[71] Ancient (fossil) coral limestone, notably including the Coral Rag Formation
Coral Rag Formation
of the hills around Oxford (England), was once used as a building stone, and can be seen in some of the oldest buildings in that city including the Saxon tower of St Michael at the Northgate, St. George's Tower of Oxford
Oxford
Castle, and the mediaeval walls of the city.[72] Climate research[edit] Annual growth bands in some corals, such as the deep sea bamboo corals (Isididae), may be among the first signs of the effects of ocean acidification on marine life.[73] The growth rings allow geologists to construct year-by-year chronologies, a form of incremental dating, which underlie high-resolution records of past climatic and environmental changes using geochemical techniques.[74] Certain species form communities called microatolls, which are colonies whose top is dead and mostly above the water line, but whose perimeter is mostly submerged and alive. Average tide level limits their height. By analyzing the various growth morphologies, microatolls offer a low resolution record of sea level change. Fossilized microatolls can also be dated using Radiocarbon dating. Such methods can help to reconstruct Holocene
Holocene
sea levels.[75] Increasing sea temperatures in tropical regions (~1 degree C) the last century have caused major coral bleaching, death, and therefore shrinking coral populations since although they are able to adapt and acclimate, it is uncertain if this evolutionary process will happen quickly enough to prevent major reduction of their numbers.[76] Though coral have large sexually-reproducing populations, their evolution can be slowed by abundant asexual reproduction.[77] Gene flow is variable among coral species.[77] According to the biogeography of coral species gene flow cannot be counted on as a dependable source of adaptation as they are very stationary organisms. Also, coral longevity might factor into their adaptivity.[77] However, adaptation to climate change has been demonstrated in many cases. These are usually due to a shift in coral and zooxanthellae genotypes. These shifts in allele frequency have progressed toward more tolerant types of zooxanthellae.[78] Scientists found that a certain scleractinian zooxanthella is becoming more common where sea temperature is high.[79][80] Symbionts able to tolerate warmer water seem to photosynthesise more slowly, implying an evolutionary trade-off.[80] In the Gulf of Mexico, where sea temperatures are rising, cold-sensitive staghorn and elkhorn coral have shifted in location.[78] Not only have the symbionts and specific species been shown to shift, but there seems to be a certain growth rate favorable to selection. Slower-growing but more heat-tolerant corals have become more common.[81] The changes in temperature and acclimation are complex. Some reefs in current shadows represent a refugium location that will help them adjust to the disparity in the environment even if eventually the temperatures may rise more quickly there than in other locations.[82] This separation of populations by climatic barriers causes a realized niche to shrink greatly in comparison to the old fundamental niche. Geochemistry[edit] Corals are shallow, colonial organisms that integrate δ18O and trace elements into their skeletal aragonite (polymorph of calcite) crystalline structures, as they grow. Geochemistry
Geochemistry
anomalies within the crystalline structures of corals represent functions of temperature, salinity and oxygen isotopic composition. Such geochemical analysis can help with climate modeling.[83] Strontium/calcium ratio anomaly[edit] Time can be attributed to coral geochemistry anomalies by correlating strontium/calcium minimums with sea surface temperature (SST) maximums to data collected from NINO 3.4 SSTA.[84] Oxygen isotope anomaly[edit] The comparison of coral strontium/calcium minimums with sea surface temperature maximums, data recorded from NINO 3.4 SSTA, time can be correlated to coral strontium/calcium and δ18O variations. To confirm accuracy of the annual relationship between Sr/Ca and δ18O variations, a perceptible association to annual coral growth rings confirms the age conversion. Geochronology
Geochronology
is established by the blending of Sr/Ca data, growth rings, and stable isotope data. El Nino-Southern Oscillation (ENSO) is directly related to climate fluctuations that influence coral δ18O ratio from local salinity variations associated with the position of the South Pacific convergence zone (SPCZ) and can be used for ENSO modeling.[84] Sea surface temperature
Sea surface temperature
and sea surface salinity[edit]

Global sea surface temperature (SST)

The global moisture budget is primarily being influenced by tropical sea surface temperatures from the position of the Intertropical Convergence Zone (ITCZ).[85] The Southern Hemisphere
Southern Hemisphere
has a unique meteorological feature positioned in the southwestern Pacific Basin called the South Pacific Convergence Zone (SPCZ), which contains a perennial position within the Southern Hemisphere. During ENSO warm periods, the SPCZ reverses orientation extending from the equator down south through Solomon Islands, Vanuatu, Fiji
Fiji
and towards the French Polynesian Islands; and due east towards South America
South America
affecting geochemistry of corals in tropical regions.[86] Geochemical analysis of skeletal coral can be linked to sea surface salinity (SSS) and sea surface temperature (SST), from El Nino 3.4 SSTA data, of tropical oceans to seawater δ18O ratio anomalies from corals. ENSO phenomenon can be related to variations in sea surface salinity (SSS) and sea surface temperature (SST) that can help model tropical climate activities.[87] Limited climate research on current species[edit]

Genus: Porites
Porites
lutea

Climate research on live coral species is limited to a few studied species. Studying Porites
Porites
coral provides a stable foundation for geochemical interpretations that is much simpler to physically extract data in comparison to Platygyra
Platygyra
species where the complexity of Platygyra
Platygyra
species skeletal structure creates difficulty when physically sampled, which happens to be one of the only multidecadal living coral records used for coral paleoclimate modeling.[87] Aquaria[edit] Main article: Reef aquarium

This dragon-eye zoanthid is a popular source of color in reef tanks

The saltwater fishkeeping hobby has expanded, over recent years, to include reef tanks, fish tanks that include large amounts of live rock on which coral is allowed to grow and spread.[88] These tanks are either kept in a natural-like state, with algae (sometimes in the form of an algae scrubber) and a deep sand bed providing filtration,[89] or as "show tanks", with the rock kept largely bare of the algae and microfauna that would normally populate it,[90] in order to appear neat and clean. The most popular kind of coral kept is soft coral, especially zoanthids and mushroom corals, which are especially easy to grow and propagate in a wide variety of conditions, because they originate in enclosed parts of reefs where water conditions vary and lighting may be less reliable and direct.[91] More serious fishkeepers may keep small polyp stony coral, which is from open, brightly lit reef conditions and therefore much more demanding, while large polyp stony coral is a sort of compromise between the two. Aquaculture[edit] Main article: Aquaculture of coral Coral
Coral
aquaculture, also known as coral farming or coral gardening, is the cultivation of corals for commercial purposes or coral reef restoration. Aquaculture is showing promise as a potentially effective tool for restoring coral reefs, which have been declining around the world.[92][93][94] The process bypasses the early growth stages of corals when they are most at risk of dying. Coral
Coral
fragments known as "seeds" are grown in nurseries then replanted on the reef.[95] Coral is farmed by coral farmers who live locally to the reefs and farm for reef conservation or for income. It is also farmed by scientists for research, by businesses for the supply of the live and ornamental coral trade and by private aquarium hobbyists. Gallery[edit] Further images: commons:Category: Coral
Coral
reefs and commons:Category:Corals

Fungia
Fungia
sp. skeleton

Polyps of Eusmilia fastigiata

Pillar coral, Dendrogyra cylindricus

Brain coral, Diploria labyrinthiformis

Brain coral
Brain coral
spawning

Brain coral
Brain coral
releasing eggs

Fringing coral reef off the coast of Eilat, Israel.

References[edit]

^ Hoeksema, Bert (2015). "Octocorallia". World Register of Marine Species. Retrieved 2015-04-24.  ^ Hoeksema, Bert (2015). "Hexacorallia". World Register of Marine Species. Retrieved 2015-04-24.  ^ Hoeksema, Bert (2016). "Ceriantharia". World Register of Marine Species. Retrieved 2017-02-04.  ^ Squires, D.F. (1959). " Deep sea
Deep sea
corals collected by the Lamont Geological Observatory. 1. Atlantic corals" (PDF). American Museum Novitates. 1965: 23.  ^ a b c Stampar, S.N.; Maronna, M.M.; Kitahara, M.V.; Reimer, J.D.; Morandini, A.C. (2014). "Fast-Evolving Mitochondrial DNA
Mitochondrial DNA
in Ceriantharia: A Reflection of Hexacorallia
Hexacorallia
Paraphyly?". PLoS ONE. 9 (1): e86612. doi:10.1371/journal.pone.0086612. PMC 3903554 . PMID 24475157.  ^ Leroi, Armand Marie (2014). The Lagoon: How Aristotle
Aristotle
Invented Science. Bloomsbury. p. 271. ISBN 978-1-4088-3622-4.  ^ a b c Bowen, James (2015). The Coral
Coral
Reef Era: From Discovery to Decline: A history of scientific investigation from 1600 to the Anthropocene Epoch. Springer. pp. 5–7. ISBN 978-3-319-07479-5.  ^ Egerton, Frank N. (2012). Roots of Ecology: Antiquity to Haeckel. University of California Press. p. 24. ISBN 0-520-95363-0.  ^ The Light of Reason
The Light of Reason
8 August 2006 02:00 BBC Four[better source needed] ^ a b c d e Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. pp. 132–48. ISBN 978-81-315-0104-7.  ^ Hoeksema, Bert (2015). "Anthozoa". World Register of Marine Species. Retrieved 2015-04-24.  ^ Chen, C. A.; Odorico, D. M.; ten Lohuis, M.; Veron, J. E. N.; Miller, D. J. (1995). "Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5'-end of the 28S rDNA" (PDF). Molecular Phylogenetics and Evolution. 4 (2): 175–83. doi:10.1006/mpev.1995.1017. PMID 7663762.  ^ Schuchert, Peter (2015). "Milleporidae Fleming, 1828". World Register of Marine Species. Retrieved 2015-04-24.  ^ Administration, US Department of Commerce, National Oceanic and Atmospheric. "existing and potential value of coral ecosystems with respect to income and other economic values". coralreef.noaa.gov. Retrieved 2018-02-04.  ^ Sprung, Julian (1999). Corals: A quick reference guide. Ricordea Publishing. p. 145. ISBN 1-883693-09-8.  ^ D. Gateno; A. Israel; Y. Barki; B. Rinkevich (1998). "Gastrovascular Circulation in an Octocoral: Evidence of Significant Transport of Coral
Coral
and Symbiont Cells". The Biological Bulletin. Marine Biological Laboratory. 194 (2): 178–86. doi:10.2307/1543048. JSTOR 1543048.  ^ " Coral
Coral
Feeding Habits". NOAA. Retrieved 25 April 2015.  ^ a b c Murphy, Richard C. (2002). Coral
Coral
Reefs: Cities Under The Seas. The Darwin Press. ISBN 0-87850-138-X.  ^ Lehnert, Erik (2012). "Developing the anemone Aiptasia
Aiptasia
as a tractable model for cnidarian-dinoflagellate symbiosis: the transcriptome of aposymbiotic A. pallida". BMC Genomics. 13 (271). doi:10.1186/1471-2164-13-271.  ^ Yuyama, Ikuko (2014). "Comparing the Effects of Symbiotic
Symbiotic
Algae (Symbiodinium) Clades C1 and D on Early Growth Stages of Acropora tenuis". PLOS One. 9 (6). doi:10.1371/journal.pone.0098999.  ^ Yamashita, Hiroshi (2014). "Establishment of Coral–Algal Symbiosis Requires Attraction and Selection". PLOS One. 9 (5). doi:10.1371/journal.pone.0097003.  ^ a b Madl, P.; Yip, M. (2000). "Field Excursion to Milne Bay Province – Papua New Guinea". Retrieved 2006-03-31.  ^ "Zooxanthellae...What's That?". NOAA
NOAA
Ocean
Ocean
Service Education. National Oceanic and Atmospheric Administration. Retrieved 1 December 2017.  ^ van de Plaasche, Orson (1986). Sea-level research: a manual for the collection and evaluation of data. Norwich, UK: Geo Books. p. 196. ISBN 978-94-010-8370-6.  ^ W. W. Toller; R. Rowan; N. Knowlton (2001). "Repopulation of Zooxanthellae
Zooxanthellae
in the Caribbean Corals Montastraea annularis and M. faveolata following Experimental and Disease-Associated Bleaching". The Biological Bulletin. Marine Biological Laboratory. 201 (3): 360–73. doi:10.2307/1543614. JSTOR 1543614. PMID 11751248.  ^ Brownlee, Colin (2009). "pH regulation in symbiotic anemones and corals: A delicate balancing act". Proceedings of the National Academy of Sciences of the United States of America. 106 (39): 16541–16542. doi:10.1073/pnas.0909140106.  ^ a b c d Veron, J.E.N. (2000). Corals of the World. Vol 3 (3rd ed.). Australia: Australian Institute of Marine Sciences and CRR Qld. ISBN 0-642-32236-8.  ^ a b Barnes, R. and; Hughes, R. (1999). An Introduction to Marine Ecology (3rd ed.). Malden, MA: Blackwell. pp. 117–41. ISBN 0-86542-834-4.  ^ Hatta, M.; Fukami, H.; Wang, W.; Omori, M.; Shimoike, K.; Hayashibara, T.; Ina, Y.; Sugiyama, T. (1999). "Reproductive and genetic evidence for a reticulate evolutionary theory of mass spawning corals" (PDF). Molecular Biology and Evolution. 16 (11): 1607–13. doi:10.1093/oxfordjournals.molbev.a026073. PMID 10555292.  ^ Vermeij, Mark J. A.; Marhaver, Kristen L.; Huijbers, Chantal M.; Nagelkerken, Ivan; Simpson, Stephen D. (2010). " Coral
Coral
Larvae Move toward Reef Sounds". PLoS ONE. 5 (5): e10660. doi:10.1371/journal.pone.0010660. PMC 2871043 . PMID 20498831. Lay summary – ScienceDaily (May 16, 2010).  ^ Jones, O.A.; R. Endean. (1973). Biology and Geology
Geology
of Coral
Coral
Reefs. New York, USA: Harcourt Brace Jovanovich. pp. 205–45. ISBN 0-12-389602-9.  ^ Gulko, David (1998). Hawaiian Coral
Coral
Reef Ecology. Honolulu, Hawaii: Mutual Publishing. p. 10. ISBN 1-56647-221-0.  ^ Sheppard, Charles R.C.; Davy, Simon K.; Pilling, Graham M. (25 June 2009). The Biology of Coral
Coral
Reefs. OUP Oxford. pp. 78–81. ISBN 978-0-19-105734-2.  ^ Schuhmacher, Helmut; Zibrowius, Helmut (1985). "What is hermatypic?". Coral
Coral
Reefs. 4 (1): 1–9. Bibcode:1985CorRe...4....1S. doi:10.1007/BF00302198.  ^ MSN Encarta (2006). Great Barrier Reef. Archived from the original on November 1, 2009. Retrieved April 25, 2015.  ^ Spalding, Mark; Ravilious, Corinna; Green, Edmund (2001). World Atlas of Coral
Coral
Reefs. Berkeley, CA: University of California Press and UNEP/WCMC. pp. 205–45. ISBN 0-520-23255-0.  ^ Pratt, B.R.; Spincer, B.R., R.A. Wood and A.Yu. Zhuravlev (2001). "12: Ecology and Evolution of Cambrian
Cambrian
Reefs". Ecology of the Cambrian Radiation (PDF). Columbia University Press. p. 259. ISBN 0-231-10613-0. Retrieved 2007-04-06. CS1 maint: Multiple names: authors list (link) [permanent dead link] ^ Vinn, O.; Mõtus, M.-A. (2008). "The earliest endosymbiotic mineralized tubeworms from the Silurian
Silurian
of Podolia, Ukraine". Journal of Paleontology. 82 (2): 409–14. doi:10.1666/07-056.1. Retrieved 2014-06-11.  ^ Vinn, O.; Mõtus, M.-A. (2012). "Diverse early endobiotic coral symbiont assemblage from the Katian (Late Ordovician) of Baltica". Palaeogeography, Palaeoclimatology, Palaeoecology. 321–322: 137–41. doi:10.1016/j.palaeo.2012.01.028. Retrieved 2014-06-11.  ^ "Introduction to the Tabulata". UCMP
UCMP
Berkeley. Retrieved 25 April 2015.  ^ "Introduction to the Rugosa". UCMP
UCMP
Berkeley. Retrieved 25 April 2015.  ^ "Evolutionary history". AIMS. Retrieved 25 April 2015.  ^ Ries, J.B., Stanley, S.M., Hardie, L.A.; Stanley; Hardie (July 2006). "Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous
Cretaceous
seawater". Geology. 34 (7): 525–28. doi:10.1130/G22600.1. CS1 maint: Multiple names: authors list (link) ^ Waggoner, Ben M. (2000). Smith, David; Collins, Allen, eds. "Anthozoa: Fossil
Fossil
Record". Anthozoa. UCMP. Retrieved 23 March 2009.  ^ Oliver, William A. Jr. (2003). "Corals: Table 1". Fossil
Fossil
Groups. USGS. Retrieved 23 March 2009.  ^ Alden, Andrew. "Index Fossils". About education. Retrieved 25 April 2015.  ^ " Coral
Coral
reefs around the world". Guardian.co.uk. 2 September 2009.  ^ a b "Threats to Coral
Coral
Reefs". Coral
Coral
Reef Alliance. 2010. Archived from the original on 1 December 2011. Retrieved 5 December 2011.  ^ Losing Our Coral
Coral
Reefs – Eco Matters – State of the Planet. Blogs.ei.columbia.edu. Retrieved on 2011-11-01. ^ Kleypas, J.A.; Feely, R.A.; Fabry, V.J.; Langdon, C.; Sabine, C.L.; Robbins, L.L. (2006). "Impacts of Ocean
Ocean
Acidification on Coral
Coral
Reefs and Other Marine Calcifiers: A guide for Future Research" (PDF). National Science Foundation, NOAA, & United States Geological Survey. Archived from the original (PDF) on July 20, 2011. Retrieved April 7, 2011.  ^ Save Our Seas, 1997 Summer Newsletter, Dr. Cindy Hunter and Dr. Alan Friedlander ^ Tun, K.; Chou, L.M.; Cabanban, A.; Tuan, V.S.; Philreefs; Yeemin, T.; Suharsono; Sour, K.; Lane, D. (2004). "Status of Coral
Coral
Reefs, Coral
Coral
Reef Monitoring and Management in Southeast Asia, 2004". In Wilkinson, C. Status of Coral
Coral
Reefs of the world: 2004. Townsville, Queensland, Australia: Australian Institute of Marine Science. pp. 235–76.  ^ Burke, Lauretta; Reytar, K.; Spalding, M.; Perry, A. (2011). Reefs at risk revisited. Washington, DC: World Resources Institute. p. 38. ISBN 978-1-56973-762-0.  ^ Bryant, Dirk; Burke, Lauretta; McManus, John; Spalding, Mark. "Reefs at Risk: A Map-Based Indicator of Threats to the World's Coral
Coral
Reef" (PDF). NOAA. Retrieved 25 April 2015.  ^ Norlander (8 December 2003). " Coral
Coral
crisis! Humans are killing off these bustling underwater cities. Can coral reefs be saved? (Life science: corals)". Science World.  ^ Rasher DB, Hay ME; Hay (May 2010). "Chemically rich seaweeds poison corals when not controlled by herbivores". Proceedings of the National Academy of Sciences of the United States of America. 107 (21): 9683–88. doi:10.1073/pnas.0912095107. PMC 2906836 . PMID 20457927.  ^ Hoegh-Guldberg, O. (1999). "Climate change, coral bleaching and the future of the world's coral reefs" (PDF). Marine and Freshwater Research. 50 (8): 839–66. doi:10.1071/MF99078. Archived from the original (PDF) on 2012-04-26.  ^ a b Stephens, Tim (28 November 2011). "Submarine springs offer preview of ocean acidification effects on coral reefs". University of California Santa Cruz. Retrieved 25 April 2015.  ^ "Phoenix Rising". National Geographic Magazine. January 2011. Retrieved April 30, 2011.  ^ EcoDeco EcologicalTechnology Archived 2011-03-07 at the Wayback Machine.. Ecodeco.nl. Retrieved on 2011-11-29. ^ KoralenKAS project Archived 2012-04-26 at the Wayback Machine.. Koraalwetenschap.nl. Retrieved on 2011-11-29. ^ Hunt, Chloe V.; Harvey, James J.; Miller, Anne; Johnson, Vivienne; Phongsuwan, Niphon (2013). "The Green Fins
Green Fins
approach for monitoring and promoting environmentally sustainable scuba diving operations in South East Asia". Ocean
Ocean
& Coastal Management. 78: 35–44. doi:10.1016/j.ocecoaman.2013.03.004.  ^ "Eight great soft corals for new reefkeepers". AquaDaily. 2008-12-05. Retrieved 2009-01-02.  ^ Magsaysay, Melissa (June 21, 2009). " Coral
Coral
makes a splash". Los Angeles Times. Retrieved January 12, 2013.  ^ Welch, Patricia Bjaaland, Chinese Art: A Guide to Motifs and Visual Imagery. Tokyo, Rutland and Singapore: Tuttle, 2008, p. 61 ^ Lacey, Pippa, "The Coral
Coral
Network: The trade of red coral to the Qing imperial court in the eighteenth century" in The Global Lives of Things, ed. by Anne Gerritsen and Giorgio Aiello, London: Rutledge, 2016, p. 81 ^ Folio 391, Juliana Anicia Codex ^ H. Ehrlich, P. Etnoyer, S. D. Litvinov; Etnoyer, P.; Litvinov, S. D.; Olennikova, M.M.; Domaschke, H.; Hanke, T.; Born, R.; Meissner, H.; Worch, H.; et al. (2006). "Biomaterial structure in deep-sea bamboo coral (Anthozoa: Gorgonacea: Isididae)". Materialwissenschaft und Werkstofftechnik. www3.interscience.wiley.com. 37 (6): 552–57. doi:10.1002/mawe.200600036. Retrieved 2009-05-11. CS1 maint: Multiple names: authors list (link) ^ Reddy PN, Lakshmana M, Udupa UV; Lakshmana; Udupa (December 2003). "Effect of Praval bhasma ( Coral
Coral
calx), a natural source of rich calcium on bone mineralization in rats". Pharmacological Research. 48 (6): 593–99. doi:10.1016/S1043-6618(03)00224-X. PMID 14527824. CS1 maint: Multiple names: authors list (link) ^ Pedanius Dioscorides
Dioscorides
– Der Wiener Dioskurides, Codex medicus Graecus 1 der Österreichischen Nationalbibliothek Graz: Akademische Druck- und Verlagsanstalt 1998 fol. 391 verso (Band 2), Kommentar S. 47 und 52. ISBN 3-201-01725-6 ^ Pouwels, Randall L. (6 June 2002). Horn and Crescent: Cultural Change and Traditional Islam on the East African Coast, 800–1900. Cambridge University Press. p. 26. ISBN 978-0-521-52309-7.  ^ "Strategic Stone Study: A Building Stone Atlas of Oxfordshire". English Heritage. March 2011. Retrieved 23 April 2015.  ^ "National Oceanic and Atmospheric Administration – New Deep-Sea Coral
Coral
Discovered on NOAA-Supported Mission". www.noaanews.noaa.gov. Retrieved 2009-05-11.  ^ Schrag, D.P.; Linsley, B.K. (2002). "Corals, chemistry, and climate". Science. 296 (8): 277–78. doi:10.1126/science.1071561. PMID 11951026.  ^ Smithers, Scott G.; Woodroffe, Colin D. (2000). "Microatolls as sea-level indicators on a mid-ocean atoll". Marine Geology. 168 (1–4): 61–78. doi:10.1016/S0025-3227(00)00043-8.  ^ Hoegh-Guldberg O. (1999). "Climate change, coral bleaching and the future of the world's coral reefs". Marine and Freshwater Research. 50 (8): 839–99. doi:10.1071/mf99078.  ^ a b c Hughes, T.; Baird, A.; Bellwood, D.; Card, M.; Connolly, S.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.; Klepas, J.; Lough, J.; Marshall, P.; Nystrom, M.; Palumbi, S.; Pandolfi, J.; Rosen, B.; and Roughgarden, J. (2003). "Climate change, human impacts, and the resilience of coral reefs". Science. 301 (5635): 929–33. doi:10.1126/science.1085046. PMID 12920289.  ^ a b Parmesan, C. (2006). "Ecological and evolutionary responses to recent climate change". Annual Review of Ecology, Evolution, and Systematics. 37: 637–69. doi:10.1146/annurev.ecolsys.37.091305.110100.  ^ Baker, A. (2004). "Corals' adaptive response to climate change". Nature. 430 (7001): 741. doi:10.1038/430741a.  ^ a b Donner, S., Skirving, W., Little, C., Oppenheimer, M., and Hoegh-Guldenberg (2005). "Global assessment of coral bleaching and required rates of adaptation under climate change" (PDF). Global Change Biology. 11 (12): 2251–65. doi:10.1111/j.1365-2486.2005.01073.x. CS1 maint: Multiple names: authors list (link) ^ Baskett, M.; Gaines, S. & Nisbet, R. (2009). "Symbiont diversity may help coral reefs survive moderate climate change". Ecological Applications. 19 (1): 3–17. doi:10.1890/08-0139.1. PMID 19323170.  ^ McClanahan, T.; Ateweberhan, M.; Muhando, C.; Maina, J. & Mohammed, M. (2007). "Effects of Climate and Seawater Temperature Variation on Coral
Coral
Bleaching and Morality". Ecological Monographs. 77 (4): 503–25. doi:10.1890/06-1182.1.  ^ Kilbourne, K. Halimeda; Quinn, Terrence M.; Taylor, Frederick W.; Delcroix, Thierry; Gouriou, Yves (2004). "El Niño-Southern Oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites
Porites
coral from Espiritu Santo, Vanuatu". Paleoceanography. 19 (4): PA4002. Bibcode:2004PalOc..19.4002K. doi:10.1029/2004PA001033.  ^ a b Ren, Lei; Linsley, Braddock K.; Wellington, Gerard M.; Schrag, Daniel P.; Hoegh-guldberg, Ove (2003). "Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997". Geochimica et Cosmochimica Acta. 67 (9): 1609–21. Bibcode:2003GeCoA..67.1609R. doi:10.1016/S0016-7037(02)00917-1.  ^ Wu, Henry C.; Linsley, Braddock K.; Dassié, Emilie P.; Schiraldi, Benedetto; deMenocal, Peter B. (2013). "Oceanographic variability in the South Pacific Convergence Zone region over the last 210 years from multi-site coral Sr/Ca records". Geochemistry, Geophysics, Geosystems. 14 (5): 1435–53. doi:10.1029/2012GC004293.  ^ Kiladis, George N.; von Storch, Hans; van Loon, Harry (1989). "Origin of the South Pacific Convergence Zone". Journal of Climate. 2 (10): 1185–95. doi:10.1175/1520-0442(1989)002<1185:OOTSPC>2.0.CO;2.  ^ a b Lukas, Roger; Lindstrom, Eric (1991). "The mixed layer of the western equatorial Pacific Ocean". Journal of Geophysical Research. 96 (S1): 3343–58. Bibcode:1991JGR....96.3343L. doi:10.1029/90JC01951.  ^ Aquarium
Aquarium
Corals: Collection and Aquarium
Aquarium
Husbandry of Northeast Pacific Non-Photosynthetic Cnidaria. Advancedaquarist.com (2011-01-14). Retrieved on 2016-06-13. ^ Reefkeeping 101 – Various Nutrient Control Methods. Reefkeeping.com. Retrieved on 2016-06-13. ^ Aquarium
Aquarium
Substrate & Live Rock Clean Up Tips. Saltaquarium.about.com. Retrieved on 2016-06-13. ^ Coral
Coral
Reefs Archived 2013-01-21 at the Wayback Machine.. Marinebio.org. Retrieved on 2016-06-13. ^ Horoszowski-Fridman YB, Izhaki I, Rinkevich B; Izhaki; Rinkevich (2011). "Engineering of coral reef larval supply through transplantation of nursery-farmed gravid colonies". Journal of Experimental Marine Biology and Ecology. 399 (2): 162–66. doi:10.1016/j.jembe.2011.01.005. CS1 maint: Multiple names: authors list (link) ^ Pomeroy, Robert S.; Parks, John E.; Balboa, Cristina M. (2006). "Farming the reef: Is aquaculture a solution for reducing fishing pressure on coral reefs?". Marine Policy. 30 (2): 111–30. doi:10.1016/j.marpol.2004.09.001.  ^ Rinkevich B (2008). "Management of coral reefs: We have gone wrong when neglecting active reef restoration" (PDF). Marine pollution bulletin. 56 (11): 1821–24. doi:10.1016/j.marpolbul.2008.08.014. PMID 18829052. Archived from the original (PDF) on 2013-05-23.  ^ Ferse, Sebastian C.A. (2010). "Poor Performance of Corals Transplanted onto Substrates of Short Durability". Restoration Ecology. 18 (4): 399–407. doi:10.1111/j.1526-100X.2010.00682.x. 

Sources[edit]

Allen, G.R; R. Steene (1994). Indo-Pacific Coral
Coral
Reef Field Guide. ISBN 981-00-5687-7.  Calfo, Anthony. Book of Coral
Coral
Propagation. ISBN 0-9802365-0-9.  Colin, P.L.; C. Arneson (1995). Tropical Pacific Invertebrates. ISBN 0-9645625-0-2.  Fagerstrom, J.A. (1987). The Evolution of Reef Communities. ISBN 0-471-81528-4.  Gosliner, T., D. Behrens & G. Williams (1996). Coral
Coral
Reef Animals of the Indo-Pacific, Animals Life from Africa to Hawai'i (invertebrates). ISBN 0-930118-21-9. CS1 maint: Multiple names: authors list (link) Nybakken, J.W. (2004). Marine Biology, An Ecological Approach. ISBN 0-8053-4582-5.  Redhill, Surrey. Corals of the World: Biology and Field Guide.  Segaloff, Nat; Paul Erickson (1991). A Reef Comes to Life. Creating an Undersea Exhibit. ISBN 0-531-10994-1.  Sheppard, Charles R.C.; Davy, Simon K.; Pilling, Graham M. (25 June 2009). The Biology of Coral
Coral
Reefs. OUP Oxford. ISBN 978-0-19-105734-2.  Veron, J.E.N. (1993). Corals of Australia
Australia
and the Indo-Pacific. ISBN 0-8248-1504-1.  Wells, Susan. Coral
Coral
Reefs of the World. 

External links[edit]

Wikispecies
Wikispecies
has information related to Coral

Wikimedia Commons has media related to Coral
Coral
and Anthozoa.

Coral
Coral
Reefs The Ocean
Ocean
Portal
Portal
by the Smithsonian Institution NOAA
NOAA
CoRIS – Coral
Coral
Reef Biology NOAA
NOAA
Ocean
Ocean
Service Education – Corals " Coral
Coral
Factsheet". Waitt Institute. Retrieved 2017-02-04.  "What is a coral?". Stanford microdocs project. Retrieved 2017-02-04. 

v t e

Corals and coral reefs

Stony corals

Blue Brain Elegance Elkhorn Hermatypic Chalice Pillar Staghorn Table

Soft corals

Bamboo Black Organ pipe Sea fans Sea pens

Coral
Coral
reefs

Atoll Cay Coral Fringing Microatoll Coral reef
Coral reef
fish Census of Coral
Coral
Reefs The Structure and Distribution of Coral
Coral
Reefs Catlin Seaview Survey Spur and groove formation

Coral
Coral
regions

List of reefs Deep-water coral African coral reefs Amazon Reef Andros, Bahamas Belize Barrier Reef Coral
Coral
Sea Islands Coral
Coral
Triangle Florida Keys National Marine Sanctuary Great Barrier Reef Maldives Mesoamerican Barrier Reef System New Caledonia barrier reef Pulley Ridge Raja Ampat Islands Red Sea Southeast Asian coral reefs

Coral
Coral
diseases

Coral
Coral
bleaching Black band disease Skeletal eroding band White band disease White pox disease

Protection

Coral
Coral
Reef Alliance Coral reef
Coral reef
protection Green Fins International Society for Reef Studies Project AWARE Reef Check Reef Ball

Other

Artificial reef Aquaculture of coral Coral
Coral
dermatitis Precious coral Coral
Coral
rag Coral reef
Coral reef
organizations Coral
Coral
sand Coralline algae Environmental issues with coral reefs Fire coral Reef resilience Rugosa
Rugosa
(extinct) Symbiodinium Tabulata

v t e

Living things in culture

Academic disciplines

Anthrozoology Ethnobiology

Ethnobotany Ethnoecology Ethnoentomology Ethnoherpetology Ethnoichthyology Ethnolichenology Ethnomycology Ethnoornithology Ethnoprimatology Ethnozoology

Groups

Animals

Arthropods

Insects

Topics

Beekeeping Entomophagy Flea
Flea
circus Insects in art Insects in literature Insects in medicine Insects in music Insects in mythology Insects in religion Sericulture

Types

Ant Bee

Mythology

Beetle

Beetlewing

Butterfly Cicada Cricket Dragonfly Flea

Flea
Flea
circus

Fly Grasshopper Ladybird Louse Praying mantis Scarab Termite Wasp Woodworm

Other

Arthropods in film Crab Lobster Scorpion Spider

Arachnophobia Tarantella

Tick

Molluscs

Cephalopods in popular culture Conch (instrument) Conchology Edible molluscs Octopus Pearl Scallop Seashell Sea silk Shell money Shipworm Tyrian purple Venus shell

Vertebrates

Amphibians

Frog Salamander Toad

Toadstone

Birds

Aviculture Birdwatching Bird conservation Birds in culture Cockfighting Falconry Game bird Pigeon racing Poultry Archaeopteryx Barnacle goose Eagle

Fish

Fishing

History

Fish
Fish
farming Fishkeeping Recreational fishing Shark

Attacks Jaws

Mammals

Topics

Animal
Animal
husbandry Fur farming Hunting In sport In professional wrestling Laboratory animal Livestock Pack animal Working animal

Types

Bat Bear

Baiting Hunting Teddy bear

Cattle Deer Elephant Dolphin Fox Horse

Riding Worship

Leopard Lion Primate

Gorilla Gorilla suit Monkey Orangutan

Seal

hunting

Sheep Whale

Tay Whale Whaling Whale
Whale
watching

Wolf

Werewolf

Reptiles

Crocodile

Attacks Farming Crocodile
Crocodile
tears

Dinosaur

Crystal Palace Dinosaurs Jurassic
Jurassic
Park Stegosaurus Triceratops Tyrannosaurus rex

Dragon Lizard Snake

Caduceus In the Bible Rod of Asclepius Snakebite Snake
Snake
charming Symbolism Worship

Turtle

Bixi World Turtle

Other phyla

Coral Jellyfish Starfish

Other

Aesop's Fables Animal
Animal
epithet Animal
Animal
husbandry In heraldry Lists of legendary creatures Man-eater Zodiac

Plants

Agriculture

History

Botanical illustration Floral design

Ikebana

Gardening Herbalism Fictional plants Magical plants

Mandrake

Medicinal plants Pharmacognosy Plant epithet Sacred grove

In India

Sacred plants

Bodhi Tree Lime tree Sacred lotus Sacred herb

In mythology

Barnacle tree Fig Trees Yggdrasil

Fungi

Medicinal fungi Amanita muscaria Edible mushroom

Agaricus bisporus

Psilocybin mushroom

Microbes

Biological warfare Fermentation

In food processing List of microbes

Microbial art Microbes and Man Pathogen Protein production Bacteria

Economic importance Tuberculosis

Protist Virus Yeast

Bread Beer Wine

Related

Anthropomorphism Fossil Legendary creature Lists of fictional species Parasitoid Template: