Parouse.com
 Parouse.com



Surface degradation resulting from the action of cells. Note 1: Erosion is a general characteristic of biodegradation by cells that adhere to a surface and the molar mass of the bulk does not change, basically. Note 2: Chemical degradation can present the characteristics of cell-mediated erosion when the rate of chemical chain scission is greater than the rate of penetration of the cleaving chemical reagent, like diffusion of water in the case of hydrolytically degradable polymer, for instance. Note 3: Erosion with constancy of the bulk molar mass is also observed in the case of in vitro abiotic enzymatic degradation. Note 4: In some cases, bioerosion results from a combination of cell-mediated and chemical degradation, actually.[1]

Bioerosion
Bioerosion
describes the breakdown of hard ocean substrates – and less often terrestrial substrates – by living organisms. Marine bioerosion can be caused by mollusks, polychaete worms, phoronids, sponges, crustaceans, echinoids, and fish; it can occur on coastlines, on coral reefs, and on ships; its mechanisms include biotic boring, drilling, rasping, and scraping. On dry land, bioerosion is typically performed by pioneer plants or plant-like organisms such as lichen, and mostly chemical (e.g. by acidic secretions on limestone) or mechanical (e.g. by roots growing into cracks) in nature. Bioerosion
Bioerosion
of coral reefs generates the fine and white coral sand characteristic of tropical islands. The coral is converted to sand by internal bioeroders such as algae, fungi, bacteria (microborers) and sponges (Clionaidae), bivalves (including Lithophaga), sipunculans, polychaetes, acrothoracican barnacles and phoronids, generating extremely fine sediment with diameters of 10 to 100 micrometres. External bioeroders include sea urchins (such as Diadema) and chitons. These forces in concert produce a great deal of erosion. Sea urchin erosion of calcium carbonate has been reported in some reefs at annual rates exceeding 20 kg/m². Fish
Fish
also erode coral while eating algae. Parrotfish
Parrotfish
cause a great deal of bioerosion using well developed jaw muscles, tooth armature, and a pharyngeal mill, to grind ingested material into sand-sized particles. Bioerosion
Bioerosion
of coral reef aragonite by parrotfish can range from 1017.7±186.3 kg/yr (0.41±0.07 m³/yr) for Chlorurus gibbus and 23.6±3.4 kg/yr (9.7 10-³±1.3 10-³ m²/yr) for Chlorurus sordidus (Bellwood, 1995). Bioerosion
Bioerosion
is also well known in the fossil record on shells and hardgrounds (Bromley, 1970), with traces of this activity stretching back well into the Precambrian
Precambrian
(Taylor & Wilson, 2003). Macrobioerosion, which produces borings visible to the naked eye, shows two distinct evolutionary radiations. One was in the Middle Ordovician
Ordovician
(the Ordovician
Ordovician
Bioerosion
Bioerosion
Revolution; see Wilson & Palmer, 2006) and the other in the Jurassic
Jurassic
(see Taylor & Wilson, 2003; Bromley, 2004; Wilson, 2007). Microbioerosion also has a long fossil record and its own radiations (see Glaub & Vogel, 2004; Glaub et al., 2007).

Contents

1 Image gallery 2 See also 3 References 4 Further reading 5 External links

Image gallery[edit]

Trypanites
Trypanites
borings in an Upper Ordovician
Ordovician
hardground, southeastern Indiana; see Wilson and Palmer (2001).

Petroxestes
Petroxestes
borings in an Upper Ordovician
Ordovician
hardground, southern Ohio; see Wilson and Palmer (2006).

Gastrochaenolites
Gastrochaenolites
borings in a Middle Jurassic
Jurassic
hardground, southern Utah; see Wilson and Palmer (1994).

Numerous borings in a Cretaceous
Cretaceous
cobble, Faringdon, England; see Wilson (1986).

Cross-section of a Jurassic
Jurassic
rockground; borings include Gastrochaenolites
Gastrochaenolites
(some with boring bivalves in place) and Trypanites; Mendip Hills, England; scale bar = 1 cm.

Teredolites borings in a modern wharf piling; the work of bivalves known as "shipworms".

Ordovician
Ordovician
hardground cross-section with Trypanites
Trypanites
borings filled with dolomite; southern Ohio.

Gastrochaenolites
Gastrochaenolites
boring in a recrystallized scleractinian coral, Matmor Formation
Matmor Formation
(Middle Jurassic) of southern Israel.

Osprioneides
Osprioneides
borings in a Silurian
Silurian
stromatoporoid from Saaremaa, Estonia; see Vinn, Wilson and Mõtus (2014).

Gnathichnus
Gnathichnus
pentax echinoid trace fossil on an oyster from the Cenomanian
Cenomanian
of Hamakhtesh Hagadol, southern Israel.

Geopetal structure in bivalve boring in coral; bivalve shell visible; Matmor Formation
Matmor Formation
(Middle Jurassic), southern Israel.

Borings in an Upper Ordovician
Ordovician
bryozoan, Bellevue Formation, northern Kentucky; polished cross-section.

See also[edit]

Geomorphology

Biogeomorphology Coastal erosion

Ocean Biopitting

References[edit]

^ "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" (PDF). Pure and Applied Chemistry. 84 (2): 377–410. 2012. doi:10.1351/PAC-REC-10-12-04. 

Bellwood, D. R. (1995). "Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia". Marine Biology. 121 (3): 419–429. doi:10.1007/BF00349451.  Bromley, R. G (1970). "Borings as trace fossils and Entobia
Entobia
cretacea Portlock as an example". In Crimes, T.P.; Harper, J.C. Trace Fossils. Geological Journal Special
Special
Issue 3. pp. 49–90.  Bromley, R. G. (2004). "A stratigraphy of marine bioerosion". In D. McIlroy. The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London Special Publications 228. London: Geological Society. pp. 455–481. ISBN 1-86239-154-8.  Glaub, I.; Golubic, S.; Gektidis, M.; Radtke, G.; Vogel, K. (2007). "Microborings and microbial endoliths: geological implications". In Miller III, W. Trace fossils: concepts, problems, prospects. Amsterdam: Elsevier. pp. 368–381. ISBN 0-444-52949-7.  Glaub, I.; Vogel, K. (2004). "The stratigraphic record of microborings". Fossils & Strata. 51: 126–135. ISSN 0300-9491.  Palmer, T. J. (1982). "Cambrian to Cretaceous
Cretaceous
changes in hardground communities". Lethaia. 15 (4): 309–323. doi:10.1111/j.1502-3931.1982.tb01696.x.  Taylor, P. D.; Wilson, M. A. (2003). "Palaeoecology and evolution of marine hard substrate communities" (PDF). Earth-Science Reviews. 62 (1–2): 1–103. Bibcode:2003ESRv...62....1T. doi:10.1016/S0012-8252(02)00131-9. Archived from the original (PDF) on 2009-03-25.  Vinn, O.; Wilson, M. A.; Mõtus, M.-A. (2014). "The Earliest Giant Osprioneides
Osprioneides
Borings from the Sandbian (Late Ordovician) of Estonia". PLoS ONE. 9 (6: e99455): e99455. Bibcode:2014PLoSO...999455V. doi:10.1371/journal.pone.0099455. PMC 4047083 . PMID 24901511.  Wilson, M. A. (1986). "Coelobites and spatial refuges in a Lower Cretaceous
Cretaceous
cobble-dwelling hardground fauna". Palaeontology. 29: 691–703. ISSN 0031-0239.  Wilson, M. A. (2007). "Macroborings and the evolution of bioerosion". In Miller III, W. Trace fossils: concepts, problems, prospects. Amsterdam: Elsevier. pp. 356–367. ISBN 0-444-52949-7.  Wilson, M. A.; Palmer, T. J. (1994). "A carbonate hardground in the Carmel Formation (Middle Jurassic, SW Utah, USA) and its associated encrusters, borers and nestlers". Ichnos. 3 (2): 79–87. doi:10.1080/10420949409386375.  Wilson, M. A.; Palmer, T. J. (2001). "Domiciles, not predatory borings: a simpler explanation of the holes in Ordovician
Ordovician
shells analyzed by Kaplan and Baumiller, 2000". PALAIOS. 16 (5): 524–525. Bibcode:2001Palai..16..524W. doi:10.1669/0883-1351(2001)016<0524:DNPBAS>2.0.CO;2.  Wilson, M. A.; Palmer, T. J. (2006). "Patterns and processes in the Ordovician
Ordovician
Bioerosion
Bioerosion
Revolution" (PDF). Ichnos. 13 (3): 109–112. doi:10.1080/10420940600850505. Archived from the original (PDF) on 2008-12-16. 

Further reading[edit]

Vinn, O.; Wilson, M.A. (2010). "Occurrence of giant borings of Osprioneides
Osprioneides
kampto in the lower Silurian
Silurian
(Sheinwoodian) stromatoporoids of Saaremaa, Estonia". Ichnos. 17: 166–171. doi:10.1080/10420940.2010.502478. Retrieved 2014-06-10.  Vinn, O.; Wilson, M.A. (2010). "Early large borings from a hardground of Floian-Dapingian age (Early and Middle Ordovician) in northeastern Estonia
Estonia
(Baltica)". Carnets de Géologie. 2010: CG2010_L04. doi:10.4267/2042/35594. Retrieved 2014-06-10.  Vinn, O.; Wilson, M.A.; Toom, U. (2015). " Bioerosion
Bioerosion
of Inorganic Hard Substrates in the Ordovician
Ordovician
of Estonia
Estonia
(Baltica)". PLOS ONE. 10 (7): e0134279. Bibcode:2015PLoSO..1034279V. doi:10.1371/journal.pone.0134279. PMC 4517899 . PMID 26218582. Retrieved 2015-09-21. 

External links[edit]

Wikimedia Commons has media related to Bioerosion.

Bioerosion
Bioerosion
Website at The